Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

@tensorflow/tfjs-data

Package Overview
Dependencies
Maintainers
9
Versions
126
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@tensorflow/tfjs-data

TensorFlow Data API in JavaScript

  • 4.8.0
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
114K
increased by4.26%
Maintainers
9
Weekly downloads
 
Created
Source

TensorFlow.js Data

This repo is under active development and is not production-ready. We are actively developing as an open source project.

TensorFlow.js Data provides simple APIs to load and parse data from disk or over the web in a variety of formats, and to prepare that data for use in machine learning models (e.g. via operations like filter, map, shuffle, and batch).

This project is the JavaScript analogue of tf.data on the Python/C++ side. TF.js Data will match the tf.data API to the extent possible.

To keep track of issues we use the tensorflow/tfjs Github repo with comp:data tag.

Importing

There are two ways to import TensorFlow.js Data

  1. You can access TensorFlow.js Data through the union package: @tensorflow/tfjs
  2. You can get TensorFlow.js Data as a module: @tensorflow/tfjs-data. Note that tfjs-data has peer dependency on tfjs-core, so if you import @tensorflow/tfjs-data, you also need to import @tensorflow/tfjs-core.

Sample Usage

Reading a CSV file

import * as tf from '@tensorflow/tfjs';

const csvUrl = 'https://storage.googleapis.com/tfjs-examples/multivariate-linear-regression/data/boston-housing-train.csv';

async function run() {
  // We want to predict the column "medv", which represents a median value of a
  // home (in $1000s), so we mark it as a label.
  const csvDataset = tf.data.csv(
    csvUrl, {
      columnConfigs: {
        medv: {
          isLabel: true
        }
      }
    });
  // Number of features is the number of column names minus one for the label
  // column.
  const numOfFeatures = (await csvDataset.columnNames()).length - 1;

  // Prepare the Dataset for training.
  const flattenedDataset =
    csvDataset
    .map(({xs, ys}) => {
      // Convert xs(features) and ys(labels) from object form (keyed by column
      // name) to array form.
      return {xs: Object.values(xs), ys: Object.values(ys)};
    })
    .batch(10);

  // Define the model.
  const model = tf.sequential();
  model.add(tf.layers.dense({
    inputShape: [numOfFeatures],
    units: 1
  }));
  model.compile({
    optimizer: tf.train.sgd(0.000001),
    loss: 'meanSquaredError'
  });

  // Fit the model using the prepared Dataset
  return model.fitDataset(flattenedDataset, {
    epochs: 10,
    callbacks: {
      onEpochEnd: async (epoch, logs) => {
        console.log(epoch, logs.loss);
      }
    }
  });
}

run().then(() => console.log('Done'));

For more information

FAQs

Package last updated on 20 Jun 2023

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc