Security News
RubyGems.org Adds New Maintainer Role
RubyGems.org has added a new "maintainer" role that allows for publishing new versions of gems. This new permission type is aimed at improving security for gem owners and the service overall.
@thi.ng/transducers
Advanced tools
Lightweight transducer implementations for ES6 / TypeScript (~24KB minified, full lib).
Currently, the library provides altogether 75+ transducers, reducers and sequence generators for composing data transformation pipelines.
The overall concept and many of the core functions offered here are directly inspired by the original Clojure implementation by Rich Hickey, though the implementation does differ (also in contrast to some other JS based implementations) and several less common, but generally highly useful operators have been added, with at least a couple dozen more to come.
Please see the @thi.ng/iterators & @thi.ng/csp partner modules for related functionality, supplementing features of this library. However, this lib has no dependencies on either of them. The only dependency is @thi.ng/api for re-using common types & interfaces.
Having said this, since 0.8.0 this project largely supersedes the @thi.ng/iterators library for most use cases and offers are more powerful API and potentially faster execution of composed transformations (due to lack of ES generator overheads).
yarn add @thi.ng/transducers
Almost all functions can be imported selectively, but for development purposes full module re-exports are defined.
// full import
import * as tx from "@thi.ng/transducers";
// selective
import { transduce } from "@thi.ng/transducers/transduce";
import { push } from "@thi.ng/transducers/rfn/push";
import { map } from "@thi.ng/transducers/xforms/map";
// compose transducer
xform = tx.comp(
tx.filter(x => (x & 1) > 0), // odd numbers only
tx.distinct(), // distinct numbers only
tx.map(x=> x * 3) // times 3
);
// collect as array (tx.push)
tx.transduce(xform, tx.push(), [1, 2, 3, 4, 5, 4, 3, 2, 1]);
// [ 3, 9, 15 ]
// re-use same xform, but collect as set (tx.conj)
tx.transduce(xform, tx.conj(), [1, 2, 3, 4, 5, 4, 3, 2, 1]);
// Set { 3, 9, 15 }
// or apply as transforming iterator
// no reduction, only transformations
[...tx.iterator(xform, [1, 2, 3, 4, 5])]
// [ 3, 9, 15]
// single step execution
// (currently doesn't work w/ mapcat(), duplicate() and some others)
// returns undefined if transducer returned no result for this input
f = tx.step(xform);
f(1) // 3
f(2) // undefined
f(3) // 9
f(4) // undefined
f(5) // 15
f(4) // undefined
f(3) // undefined
f(2) // undefined
f(1) // undefined
// use the `frequencies` reducer to create
// a map counting occurrence of each value
tx.transduce(tx.map(x => x.toUpperCase()), tx.frequencies(), "hello world")
// Map { 'H' => 1, 'E' => 1, 'L' => 3, 'O' => 2, ' ' => 1, 'W' => 1, 'R' => 1, 'D' => 1 }
// reduction only (no transform)
tx.reduce(tx.frequencies(), [1, 1, 1, 2, 3, 4, 4])
// Map { 1 => 3, 2 => 1, 3 => 1, 4 => 2 }
// use nested reduce to compute window averages
// this combined transducer is also directly
// available as: `tx.movingAverage(n)`
tx.transduce(
tx.comp(
tx.partition(5, 1),
tx.map(x => tx.reduce(tx.mean(), x))
),
tx.push(),
[1, 2, 3, 3, 4, 5, 5, 6, 7, 8, 8, 9, 10]
);
// [ 2.6, 3.4, 4, 4.6, 5.4, 6.2, 6.8, 7.6, 8.4 ]
// function to test
fn = () => { for(i=0; i<1e6; i++) let x =Math.cos(i); return x; };
// compute the mean of 100 runs
tx.transduce(
tx.comp(tx.benchmark(), tx.take(100)),
tx.mean(),
tx.repeatedly(fn)
);
// 1.93 (milliseconds)
// alternatively, use tx.sideEffect() for any side fx
tx.transduce(
tx.comp(
tx.inspect("orig"),
tx.map(x => x + 1),
tx.inspect("mapped"),
tx.filter(x => (x & 1) > 0)
),
tx.push(),
[1, 2, 3, 4]
);
// orig 1
// mapped 2
// orig 2
// mapped 3
// orig 3
// mapped 4
// orig 4
// mapped 5
// [ 3, 5 ]
The struct
transducer is simply a composition of: partitionOf -> partition -> rename -> mapKeys
.
See code here.
// Higher-order transducer to convert linear input into structured objects
// using given field specs and ordering. A single field spec is an array of
// 2 or 3 items: `[name, size, transform?]`. If `transform` is given, it will
// be used to produce the final value for this field. In the example below,
// it is used to unwrap the ID field values, e.g. from `[0] => 0`
[...tx.iterator(
tx.struct([["id", 1, (id) => id[0]], ["pos", 2], ["vel", 2], ["color", 4]]),
[0, 100, 200, -1, 0, 1, 0.5, 0, 1, 1, 0, 0, 5, 4, 0, 0, 1, 1]) ]
// [ { color: [ 1, 0.5, 0, 1 ],
// vel: [ -1, 0 ],
// pos: [ 100, 200 ],
// id: 0 },
// { color: [ 0, 0, 1, 1 ],
// vel: [ 5, 4 ],
// pos: [ 0, 0 ],
// id: 1 } ]
tx.transduce(
tx.comp(
// split into rows
tx.mapcat(x => x.split("\n")),
// split each row
tx.map(x => x.split(",")),
// convert each row into object, rename array indices
tx.rename({ id: 0, name: 1, alias: 2, num: "length" })
),
tx.push(),
["100,typescript\n101,clojure,clj\n110,rust,rs"]
);
// [ { num: 2, name: 'typescript', id: '100' },
// { num: 3, alias: 'clj', name: 'clojure', id: '101' },
// { num: 3, alias: 'rs', name: 'rust', id: '110' } ]
// result is realized after max. 7 values, irrespective of nesting
tx.transduce(
tx.comp(tx.flatten(), tx.take(7)),
tx.push(),
[1, [2, [3, 4, [5, 6, [7, 8], 9, [10]]]]]
)
// [1, 2, 3, 4, 5, 6, 7]
// this transducer uses 2 scans (a scan = inner reducer per item)
// 1) counts incoming values
// 2) forms an array of the current counter value `x` & repeated `x` times
// 3) emits results as series of reductions in the outer array produced
// by the main reducer
// IMPORTANT: since arrays are mutable we use `pushCopy` as the inner reducer
// instead of `push` (the outer reducer)
xform = tx.comp(
tx.scan(tx.count()),
tx.map(x => [...tx.repeat(x,x)]),
tx.scan(tx.pushCopy())
);
tx.transduce(xform, tx.push(), [1, 1, 1, 1]);
// [ [ [ 1 ] ],
// [ [ 1 ], [ 2, 2 ] ],
// [ [ 1 ], [ 2, 2 ], [ 3, 3, 3 ] ],
// [ [ 1 ], [ 2, 2 ], [ 3, 3, 3 ], [ 4, 4, 4, 4 ] ] ]
// more simple & similar to previous, but without the 2nd xform step
tx.transduce(tx.comp(tx.scan(tx.count), tx.scan(tx.pushCopy)), tx.push(), [1,1,1,1])
// [ [ 1 ], [ 1, 2 ], [ 1, 2, 3 ], [ 1, 2, 3, 4 ] ]
This is a higher-order transducer, purely composed from other transducers. See code here.
src = [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 33, 48, 49, 50, 51, 126, 122, 121, 120]
[...iterator(hexDump(8, 0x400), src)]
// [ '00000400 | 41 42 43 44 45 46 47 48 | ABCDEFGH',
// '00000408 | 49 4a 21 30 31 32 33 7e | IJ!0123~',
// '00000410 | 7a 79 78 00 00 00 00 00 | zyx.....' ]
[...tx.iterator(tx.bits(8), [ 0xf0, 0xaa ])]
// [ 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0 ]
[...tx.iterator(
tx.comp(
tx.bits(8),
tx.map(x=> x ? "#" : "."),
tx.partition(8),
tx.map(x=>x.join(""))
),
[ 0x00, 0x18, 0x3c, 0x66, 0x66, 0x7e, 0x66, 0x00 ])]
// [ '........',
// '...##...',
// '..####..',
// '.##..##.',
// '.##..##.',
// '.######.',
// '.##..##.',
// '........' ]
// add offset (0x80) to allow negative values to be encoded
// (URL safe result can be produced via opt arg to `base64Encode`)
enc = tx.transduce(
tx.comp(
tx.map(x => x + 0x80),
tx.base64Encode()
),
tx.join(),
tx.range(-8, 8)
);
// "eHl6e3x9fn+AgYKDhIWGhw=="
// remove offset again during decoding, but (for example) only decode while val < 0
[...tx.iterator(
tx.comp(
tx.base64Decode(),
tx.map(x => x - 0x80),
tx.takeWhile(x=> x < 0)
),
enc)]
// [ -8, -7, -6, -5, -4, -3, -2, -1 ]
tx.transduce(tx.take(10), tx.push(), tx.choices("abcd", [1, 0.5, 0.25, 0.125]))
// [ 'a', 'a', 'b', 'a', 'a', 'b', 'a', 'c', 'd', 'b' ]
tx.transduce(tx.take(1000), tx.frequencies(), tx.choices("abcd", [1, 0.5, 0.25, 0.125]))
// Map { 'c' => 132, 'a' => 545, 'b' => 251, 'd' => 72 }
Documentation is slowly forthcoming in the form of doc comments (incl. code examples) for a small, but growing number the functions listed below. Please see source code for now.
Apart from type aliases, the only real types defined are:
Reducers are the core building blocks of transducers. Unlike other
implementations using OOP approaches, a Reducer
in this lib is a simple
3-element array of functions, each addressing a separate processing step.
Since v0.6.0 the bundled reducers are all wrapped in functions to provide a uniform API (and some of them can be preconfigured and/or are stateful closures). However, it's fine to define stateless reducers as constant arrays.
interface Reducer<A, B> extends Array<any> {
/**
* Initialization, e.g. to provide a suitable accumulator value,
* only called when no initial accumulator has been provided by user.
*/
[0]: () => A,
/**
* Completion. When called usually just returns `acc`, but stateful
* transformers should flush/apply their outstanding results.
*/
[1]: (acc: A) => A,
/**
* Reduction step. Combines new input with accumulator.
* If reduction should terminate early, wrap result via `reduced()`
*/
[2]: (acc: A, x: B) => A | Reduced<A>,
}
// A concrete example:
const push: Reducer<any[], any> = [
// init
() => [],
// completion (nothing to do in this case)
(acc) => acc,
// step
(acc, x) => (acc.push(x), acc),
];
Currently partition
, partitionBy
, streamSort
, streamShuffle
are the only operators making
use of the 1-arity completing function of their reducer.
class Reduced<T> implements IDeref<T> {
protected value: T;
constructor(val: T);
deref(): T;
}
Simple type wrapper to identify early termination of a reducer. Does not modify
wrapped value by injecting magic properties. Instances can be created via
reduced(x)
and handled via these helper functions:
reduced(x: any): any
isReduced(x: any): boolean
ensureReduced(x: any): Reduced<any>
unreduced(x: any): any
From Rich Hickey's original definition:
A transducer is a transformation from one reducing function to another
As shown in the examples above, transducers can be dynamically composed (using
comp()
) to form arbitrary data transformation pipelines without causing large
overheads for intermediate collections.
type Transducer<A, B> = (rfn: Reducer<any, B>) => Reducer<any, A>;
// concrete example of stateless transducer (expanded for clarity)
function map<A, B>(fn: (x: A) => B): Transducer<A, B> {
return (rfn: Reducer<any, B>) => {
return [
() => rfn[0](),
(acc) => rfn[1](acc),
(acc, x: A) => rfn[2](acc, fn(x))
];
};
}
// stateful transducer
// removes successive value repetitions
function dedupe<T>(): Transducer<T, T> {
return (rfn: Reducer<any, T>) => {
// state initialization
let prev = {};
return [
() => rfn[0](),
(acc) => rfn[1](acc),
(acc, x) => {
acc = prev === x ? acc : rfn[2](acc, x);
prev = x;
return acc;
}
];
};
}
comp(f1, f2, ...)
Returns new transducer composed from given transducers. Data flow is from left to right. Offers fast paths for up to 10 args. If more are given, composition is done dynamically via for loop.
compR(rfn: Reducer<any, any>, fn: (acc, x) => any): Reducer<any, any>
Helper function to build reducers.
iterator<A, B>(tx: Transducer<A, B>, xs: Iterable<A>): IterableIterator<B>
Similar to transduce()
, but emits results as ES6 iterator (and hence doesn't use a reduction function).
reduce<A, B>(rfn: Reducer<A, B>, acc: A, xs: Iterable<B>): A
Reduces iterable using given reducer and optional initial accumulator/result.
transduce<A, B, C>(tx: Transducer<A, B>, rfn: Reducer<C, B>, acc: C, xs: Iterable<A>): C
Transforms iterable using given transducer and combines results with given reducer and optional initial accumulator/result.
base64Decode(): Transducer<string, number>
base64Encode(urlSafe?: boolean, bufSize?: number): Transducer<number, string>
benchmark(): Transducer<any, number>
bits(wordSize?: number, msbFirst?: boolean): Transducer<number, number>
cat<T>(): Transducer<T[], T>
dedupe<T>(equiv?: (a: T, b: T) => boolean): Transducer<T, T>
delayed<T>(t: number): Transducer<T, Promise<T>>
distinct<T>(mapfn?: (x: T) => any): Transducer<T, T>
drop<T>(n: number): Transducer<T, T>
dropNth<T>(n: number): Transducer<T, T>
dropWhile<T>(pred: Predicate<T>): Transducer<T, T>
duplicate<T>(n?: number): Transducer<T, T>
filter<T>(pred: Predicate<T>): Transducer<T, T>
flatten<T>(): Transducer<T | Iterable<T>, T>
flattenWith<T>(fn: (x: T) => Iterable<T>): Transducer<T | Iterable<T>, T>
hexDump(cols?: number, addr?: number): Transducer<number, string>
indexed<T>(): Transducer<T, [number, T]>
inspect<T>(prefix?: string): Transducer<T, T>
interleave<A, B>(sep: B | (() => B)): Transducer<A, A | B>
interpose<A, B>(sep: B | (() => B)): Transducer<A, A | B>
keep<T>(f?: ((x: T) => any)): Transducer<T, T>
map<A, B>(fn: (x: A) => B): Transducer<A, B>
mapcat<A, B>(fn: (x: A) => Iterable<B>): Transducer<A, B>
mapIndexed<A, B>(fn: (i: number, x: A) => B): Transducer<A, B>
mapKeys(keys: IObjectOf<(x: any) => any>, copy?: boolean): Transducer<any, any>
mapNth<A, B>(n: number, offset: number, fn: (x: A) => B): Transducer<A, B>
movingAverage(n: number): Transducer<number, number>
padLast<T>(n: number, fill: T): Transducer<T, T>
partition<T>(size: number, step?: number, all?: boolean): Transducer<T, T[]>
partitionBy<T>(fn: (x: T) => any): Transducer<T, T[]>
partitionOf<T>(sizes: number[]): Transducer<T, T[]>
partitionSort<A, B>(n: number, key?: ((x: A) => B), cmp?: Comparator<B>): Transducer<A, A>
pluck<A, B>(key: PropertyKey): Transducer<A, B>
rename<A, B>(kmap: IObjectOf<PropertyKey>, rfn?: Reducer<B, [PropertyKey, A]>): Transducer<A[], B>
sample<T>(prob: number): Transducer<T, T>
scan<A, B>(rfn: Reducer<B, A>, acc?: B): Transducer<A, B>
selectKeys(...keys: PropertyKey[]): Transducer<any, any>
sideEffect<T>(fn: (x: T) => void): Transducer<T, T>
streamShuffle<T>(n: number, maxSwaps?: number): Transducer<T, T>
streamSort<A, B>(n: number, key?: ((x: A) => B), cmp?: Comparator<B>): Transducer<A, A>
struct<T>(fields: StructField[]): Transducer<any, T>
swizzle<T>(order: PropertyKey[]): Transducer<T, any>
take<T>(n: number): Transducer<T, T>
takeLast<T>(n: number): Transducer<T, T>
takeNth<T>(n: number): Transducer<T, T>
takeWhile<T>(pred: Predicate<T>): Transducer<T, T>
throttle<T>(delay: number): Transducer<T, T>
add(): Reducer<number, number>
assocMap<A, B>(): Reducer<Map<A, B>, [A, B]>
assocObj<T>(): Reducer<IObjectOf<T>, [PropertyKey, T]>
conj<T>(): Reducer<Set<T>, T>
count(offset?: number, step?: number): Reducer<number, any>
frequencies<T>(): Reducer<Map<T, number>, T>
groupBinary<T>(bits: number, key: (x: T) => number, branch?: () => IObjectOf<T[]>, leaf?: Reducer<any, T>, left?: PropertyKey, right?: PropertyKey): Reducer<any, T>
groupByMap<A, B, C>(key: (x: A) => B, rfn?: Reducer<C, A>): Reducer<Map<B, C>, A>
groupByObj<A, C>(key: (x: A) => PropertyKey, rfn?: Reducer<C, A>, init?: () => IObjectOf<C>): Reducer<IObjectOf<C>, A>
last(): last<T>(): Reducer<T, T>
max(): Reducer<number, number>
maxCompare<T>(ident: () => T, cmp: Comparator<T> = compare): Reducer<T, T>
mean(): Reducer<number, number>
min(): Reducer<number, number>
minCompare<T>(ident: () => T, cmp: Comparator<T> = compare): Reducer<T, T>
mul(): Reducer<number, number>
push<T>(): Reducer<T[], T>
pushCopy<T>(): Reducer<T[], T>
choices<T>(choices: T[], weights?: number[])
cycle<T>(input: Iterable<T>): IterableIterator<T>
iterate<T>(fn: (x: T) => T, seed: T): IterableIterator<T>
pairs(x: any): IterableIterator<[string, any]>
range(from?: number, to?: number, step?: number): IterableIterator<number>
repeat<T>(x: T, n?: number): IterableIterator<T>
repeatedly<T>(fn: () => T, n?: number): IterableIterator<T>
reverse<T>(input: Iterable<T>): IterableIterator<any>
tuples(...src: Iterable<any>[]): IterableIterator<any[]>
© 2016-2018 Karsten Schmidt // Apache Software License 2.0
FAQs
Collection of ~170 lightweight, composable transducers, reducers, generators, iterators for functional data transformations
The npm package @thi.ng/transducers receives a total of 2,762 weekly downloads. As such, @thi.ng/transducers popularity was classified as popular.
We found that @thi.ng/transducers demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 0 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
RubyGems.org has added a new "maintainer" role that allows for publishing new versions of gems. This new permission type is aimed at improving security for gem owners and the service overall.
Security News
Node.js will be enforcing stricter semver-major PR policies a month before major releases to enhance stability and ensure reliable release candidates.
Security News
Research
Socket's threat research team has detected five malicious npm packages targeting Roblox developers, deploying malware to steal credentials and personal data.