Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

@thi.ng/wasm-api

Package Overview
Dependencies
Maintainers
1
Versions
132
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@thi.ng/wasm-api

Generic, modular, extensible API bridge, polyglot glue code and bindings code generators for hybrid JS & WebAssembly projects

  • 0.11.0
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
105
increased by517.65%
Maintainers
1
Weekly downloads
 
Created
Source

wasm-api

npm version npm downloads Twitter Follow

This project is part of the @thi.ng/umbrella monorepo.

About

Generic, modular, extensible API bridge, polyglot glue code and bindings code generators for hybrid JS & WebAssembly projects.

This package provides a the following:

  1. A small, generic and modular WasmBridge class as interop basis and much reduced boilerplate for hybrid JS/WebAssembly applications.
  2. A minimal core API for debug output, string/pointer/typedarray accessors for 8/16/32/64 bit (u)ints and 32/64 bit floats, memory allocation (optional). In the future we aim to also supply support modules for DOM manipulation, WebGL, WebGPU, WebAudio etc.
  3. Include files for C11/C++ and Zig, defining WASM imports of the extern JS core API defined by this package
  4. Extensible shared datatype code generators for (currently) C11, TypeScript & Zig. The latter also generates fully type checked memory-mapped (zero-copy) accessors of WASM-side data. In general, all languages with a WebAssembly target are supported, however currently only bindings for these few langs are included.
  5. CLI frontend/utility to invoke the code generator(s)

Data bindings & code generators

The package provides an extensible codegeneration framework to simplify the bilateral design & exchange of data structures shared between the WASM & JS host env. Currently, code generators for TypeScript & Zig are supplied (more are planned). A CLI wrapper is available too.

CLI generator

The package includes a small CLI wrapper to invoke the code generator(s) from JSON type definitions and to write the generated source code(s) to different files:

$ npx @thi.ng/wasm-api

 █ █   █           │
██ █               │
 █ █ █ █   █ █ █ █ │ @thi.ng/wasm-api 0.11.0
 █ █ █ █ █ █ █ █ █ │ Multi-language data bindings code generator
                 █ │
               █ █ │

usage: wasm-api [OPTS] JSON-INPUT-FILE(S) ...
       wasm-api --help

Flags:

-d, --debug                     enable debug output
--dry-run                       enable dry run (don't overwrite files)

Main:

-c FILE, --config FILE          JSON config file with codegen options
-l ID[,..], --lang ID[,..]      [multiple] target language: "c11", "ts", "zig" (default: ["ts","zig"])
-o FILE, --out FILE             [multiple] output file path
-s TYPE, --string TYPE          Force string type implementation: "slice", "ptr"

By default, the CLI generates sources for TypeScript and Zig (in this order!). Order is important, since the output file paths must be given in the same order as the target languages. It's recommended to be more explicit with this. An example invocation looks like:

wasm-api \
  --config codegen-opts.json \
  --lang ts -o src/generated.ts \
  --lang zig -o src.zig/generated.zig \
  typedefs.json

The structure of the config file is as follows (all optional):

{
	"global": { ... },
	"c11": { ... },
	"ts": { ... },
	"zig": { ... },
}

More details about possible global, c and ts and zig config options & values.

All code generators have support for custom code prologues & epilogues which can be specified via the above options. These config options exist for both non-CLI & CLI usage. For the latter, these custom code sections can also be loaded from external files by specifying their file paths using @ as prefix, e.g.

{
	"ts": { "pre": "@tpl/prelude.ts" },
	"zig": { "pre": "@tpl/prelude.zig", "post": "@tpl/epilogue.zig" },
}
Data type definitions

Currently, the code generator supports structs and enums. See API docs for further details:

Example usage

Below is an example file with JSON type definitions and the resulting source codes:

⬇︎ CLICK TO EXPAND EACH CODE BLOCK ⬇︎

types.json (Type definitions)
[
	{
		"name": "Foo",
		"type": "struct",
		"doc": "Example struct",
		"auto": true,
		"fields": [
			{ "name": "id", "type": "u8", "doc": "Unique ID" },
			{ "name": "bars", "type": "Bar", "tag": "array", "len": 3 },
			{ "name": "color", "type": "f32", "tag": "vec", "len": 4 }
		]
	},
	{
		"name": "Bar",
		"type": "struct",
		"fields": [
			{ "name": "kind", "type": "Kind" },
			{ "name": "flags", "type": "u32" }
		]
	},
	{
		"name": "Kind",
		"type": "enum",
		"tag": "u16",
		"values": [
			"unknown",
			{ "name": "good", "value": 100 },
			{ "name": "best", "value": 1000 }
		]
	}
]
generated.ts (generated TypeScript source)
/** Generated by @thi.ng/wasm-api at 2022-08-15T22:32:21.189Z - DO NOT EDIT! */

import type { WasmTypeBase, WasmTypeConstructor } from "@thi.ng/wasm-api";

/** Example struct */
export interface Foo extends WasmTypeBase {
	color: Float32Array;
	bars: Bar[];
	/** Unique ID */
	id: number;
}

export const $Foo: WasmTypeConstructor<Foo> = (mem) => ({
	get align() { return 16; },
	get size() { return 48; },
	instance: (base) => ({
		get __base() { return base; },
		get __bytes() { return mem.u8.subarray(base, base + 48); },
		get color(): Float32Array {
			const addr = base >>> 2;
			return mem.f32.subarray(addr, addr + 4);
		},
		get bars(): Bar[] {
			const addr = (base + 16);
			const inst = $Bar(mem);
			const slice: Bar[] = [];
			for(let i = 0; i < 3; i++) slice.push(inst.instance(addr + i * 24));
			return slice;
		},
		get id(): number {
			return mem.u8[(base + 40)];
		},
		set id(x: number) {
			mem.u8[(base + 40)] = x;
		},
	})
});

export interface Bar extends WasmTypeBase {
	kind: Kind;
	flags: number;
}

export const $Bar: WasmTypeConstructor<Bar> = (mem) => ({
	get align() { return 4; },
	get size() { return 8; },
	instance: (base) => ({
		get __base() { return base; },
		get __bytes() { return mem.u8.subarray(base, base + 8); },
		get kind(): Kind {
			return mem.u16[base >>> 1];
		},
		set kind(x: Kind) {
			mem.u16[base >>> 1] = x;
		},
		get flags(): number {
			return mem.u32[(base + 4) >>> 2];
		},
		set flags(x: number) {
			mem.u32[(base + 4) >>> 2] = x;
		},
	})
});

export enum Kind {
	UNKNOWN,
	GOOD = 100,
	BEST = 1000,
}
generated.zig (generated Zig source)
//! Generated by @thi.ng/wasm-api at 2022-08-15T22:32:21.191Z - DO NOT EDIT!

/// Example struct
pub const Foo = struct {
    color: @Vector(4, f32),
    bars: [3]Bar,
    /// Unique ID
    id: u8,
};

pub const Bar = struct {
    kind: Kind,
    flags: u32,
};

pub const Kind = enum(u16) {
    unknown,
    good = 100,
    best = 1000,
};

On the TypeScript/JS side, the memory-mapped wrappers (e.g. $Foo and $Bar) can be used in combination with the WasmBridge to obtain fully typed views (according to the generated types) of the underlying WASM memory. Basic usage is like:

import { WasmBridge } from "@thi.ng/wasm-api";
import { $Foo, Kind } from "./generated.ts";

const bridge = new WasmBridge();
// bridge initialization omitted here (see other examples below)
// ...

// Create an instance using the bridge's memory views
// and mapping a `Foo` struct from given address
// (e.g. obtained from an exported WASM function/value)
const foo = $Foo(bridge).instance(0x10000);

// then use like normal JS object
foo.color
// Float32Array(4) [0.1, 0.2, 0.3, 0.4]

// this even applies to arrays using other types
foo.bars[2].kind = Kind.BEST;

// IMPORTANT: any modifications like this are directly
// applied to the underlying WASM memory...

IMPORTANT: Struct field setters are currently only supported for single values, incl. enums, strings, structs. The latter 2 will always be copied by value (mem copy). Arrays or slices of strings do not currently provide write access...

String handling

Most low-level languages deal with strings very differently and alas there's no general standard. Some have UTF-8/16 support, others don't. In some languages (incl. C & Zig), strings are stored as zero terminated, in others they aren't... It's outside the scope of this package to provide an allround out-of-the-box solution. The WasmBridge provides read & write accessors to obtain JS strings from UTF-8 encoded WASM memory. See getString() and setString() for details.

The code generators too provide a global stringType option to interpret the string type of a struct field in different ways:

  • slice (default): Considers strings as Zig-style slices (i.e. pointer + length)
  • ptr: Considers strings as C-style raw *char pointer (without any length)

Note: If setting this global option to ptr, it also has to be repeated for the TypeScript code generator explicitly.

Memory allocations

If explicitly enabled on the WASM side, the WasmBridge includes support for malloc/free-style allocations (within the linear WASM memory) from the JS side (Note: This is a breaking change in v0.10.0, now using a more flexible approach & reverse logic of earlier alpha versions).

The actual allocator is implementation specific and suitable generic mechanisms are defined for both the included Zig & C bindings. Please see for further reference:

Note: The provided Zig mechanism supports the idiomatic (Zig) pattern of working with multiple allocators in different parts of the application and supports dynamic assignments/swapping of the exposed allocator. See comments in source file and tests for more details...

try {
	// allocate 1KB of memory for passing a string to WASM side
	const addr = bridge.allocate(256);

	// write string to reserved memory
	// max. 256 bytes, zero terminated
	const num = bridge.setString("hello WASM world!", addr, 256, true);

	// call WASM function doing something w/ the string
	bridge.exports.doSomethingWithString(addr, num);

	// cleanup
	bridge.free(addr, 256);
} catch(e) {
	// deal with allocation error
	// ...
}

Custom API modules

The WasmBridge can be extented via custom defined API modules. Such API extensions will consist of a collection of JS/TS functions & variables, their related counterparts (import definitions) for the WASM target and (optionally) some shared data types (bindings for which can be generated by this package too).

On the JS side, custom API modules can be easily integrated via the IWasmAPI interface. The following example provides a brief overview:

import { IWasmAPI, WasmBridge } from "@thi.ng/wasm-api";

export class CustomAPI implements IWasmAPI {
	parent!: WasmBridge;

	async init(parent: WasmBridge) {
		this.parent = parent;
		this.parent.logger.debug("initializing custom API");

		// any other tasks you might need to do...

		return true;
	}

	/**
	 * Returns object of functions to import as externals into the
	 * WASM module during instantiation. These imports are merged
	 * into a larger imports object alongside the bridge's core API...
	 */
	getImports(): WebAssembly.Imports {
		return {
			/**
			 * Writes `num` random float32 numbers from given address
			 */
			fillRandom: (addr: number, num: number) => {
				addr >>>= 2;
				while(num-- > 0) this.parent.f32[addr++] = Math.random();
			}
		};
	}
}

Now we can supply this custom API when creating the main WASM bridge:

export const bridge = new WasmBridge({ custom: new CustomAPI() });

In Zig (or any other language of your choice) we can then utilize this custom API like so (Please also see tests & other examples in this readme):

//! custom.zig - extern definitions of custom JS API

/// JS external to fill a slice w/ random values
/// Note: Each API module uses a separate import object to avoid naming clashes
/// Here we declare an external binding belonging to the "custom" import group
///
/// The bridge core API uses "wasmapi" as reserved import group name
extern "custom" fn fillRandom(addr: usize, num: usize) void;
// Import JS core API
const js = @import("wasmapi");
const custom = @import("custom.zig");

export fn test_randomVec4() void {
	var foo = [4]f32{ 1, 2, 3, 4 };

	// print original
	js.printF32Array(foo[0..]);

	// populate foo with random numbers
	custom.fillRandom(@ptrToInt(&foo), foo.len);

	// print result
	js.printF32Array(foo[0..]);
}

Object indices & handles

Since only numeric values can be exchanged between the WASM module and the JS host, any JS native objects the WASM side might want to be working with must be managed manually in JS. For this purpose the ObjectIndex class can be used by API modules to handle ID generation (incl. recycling, using @thi.ng/idgen) and the indexing of different types of JS objects/values. Only the numeric IDs (handles) will then need to be exchanged with the WASM module...

import { ObjectIndex } from "@thi.ng/wasm-api";

const canvases = new ObjectIndex<HTMLCanvasElement>({ name: "canvas" });

// index item and assign new ID
canvases.add(document.createElement("canvas"));
// 0

// look up item by ID
canvases.get(0);
// <canvas ...>

// work w/ retrieved item
canvases.get(0).id = "foo";

// check if item for ID exists (O(1))
canvases.has(1)
// false

// by default invalid IDs throw error
canvases.get(1)
// Uncaught Error: Assertion failed: missing canvas for ID: 2

// error can be disabled via 2nd arg
canvases.get(1, false)
// undefined

// find ID using custom predicate (same failure behavior as .get())
canvases.find((x) => x.id == "bar")
// Uncaught Error: Assertion failed: given predicate matched no canvas

canvases.delete(0);
// true

Status

ALPHA - bleeding edge / work-in-progress

Search or submit any issues for this package

Installation

yarn add @thi.ng/wasm-api

ES module import:

<script type="module" src="https://cdn.skypack.dev/@thi.ng/wasm-api"></script>

Skypack documentation

For Node.js REPL:

# with flag only for < v16
node --experimental-repl-await

> const wasmApi = await import("@thi.ng/wasm-api");

Package sizes (gzipped, pre-treeshake): ESM: 6.05 KB

IMPORTANT: The package includes code generators for various languages which are not required for just using the API bridge. Hence, the usual package size in production will be MUCH smaller than what's stated here!

Dependencies

API

Generated API docs

Basic usage example

import { WasmBridge, WasmExports } from "@thi.ng/wasm-api";
import { readFileSync } from "fs";

// WASM exports from our dummy module (below)
interface App extends WasmExports {
	start: () => void;
}

(async () => {
	// new API bridge with defaults
	// (i.e. no child API modules and using console logger)
	const bridge = new WasmBridge<App>();

	// instantiate WASM module using imports provided by the bridge
	// this also initializes any bindings & bridge child APIs (if any)
	// (also accepts a fetch() `Response` as input)
	await bridge.instantiate(readFileSync("hello.wasm"));

	// call an exported WASM function
	bridge.exports.start();
})();

Zig version

Requires Zig to be installed:

//! Example Zig application (hello.zig)

/// import externals
/// see build command for configuration
const js = @import("wasmapi");
const std = @import("std");

// set custom memory allocator (here to disable)
pub const WASM_ALLOCATOR: ?std.mem.Allocator = null;

export fn start() void {
	js.printStr("hello world!");
}

The WASM binary can be built using the following command (or for more complex scenarios add the supplied .zig file(s) to your build.zig and/or source folder):

# compile WASM binary
zig build-lib \
	--pkg-begin wasmapi node_modules/@thi.ng/wasm-api/include/wasmapi.zig --pkg-end \
	-target wasm32-freestanding \
	-O ReleaseSmall -dynamic --strip \
	hello.zig

# disassemble WASM
wasm-dis -o hello.wast hello.wasm

The resulting WASM:

(module
 (type $i32_i32_=>_none (func (param i32 i32)))
 (type $none_=>_none (func))
 (type $i32_=>_i32 (func (param i32) (result i32)))
 (import "wasmapi" "_printStr" (func $fimport$0 (param i32 i32)))
 (global $global$0 (mut i32) (i32.const 1048576))
 (memory $0 17)
 (data (i32.const 1048576) "hello world!\00")
 (export "memory" (memory $0))
 (export "start" (func $0))
 (export "_wasm_allocate" (func $1))
 (export "_wasm_free" (func $2))
 (func $0
  (call $fimport$0
   (i32.const 1048576)
   (i32.const 12)
  )
 )
 (func $1 (param $0 i32) (result i32)
  (i32.const 0)
 )
 (func $2 (param $0 i32) (param $1 i32)
 )
)

C11 version

Requires Emscripten to be installed:

#include <wasmapi.h>

void WASM_KEEP start() {
	wasm_printStr0("hello world!");
}

Building the WASM module:

emcc -Os -Inode_modules/@thi.ng/wasm-api/include \
  -sERROR_ON_UNDEFINED_SYMBOLS=0 --no-entry \
  -o hello.wasm hello.c

Resulting WASM:

(module
 (type $i32_=>_none (func (param i32)))
 (type $none_=>_none (func))
 (type $i32_=>_i32 (func (param i32) (result i32)))
 (type $none_=>_i32 (func (result i32)))
 (type $i32_i32_=>_none (func (param i32 i32)))
 (import "wasmapi" "_printStr0" (func $fimport$0 (param i32)))
 (global $global$0 (mut i32) (i32.const 5243936))
 (memory $0 256 256)
 (data (i32.const 1024) "hello world!")
 (table $0 2 2 funcref)
 (elem (i32.const 1) $0)
 (export "memory" (memory $0))
 (export "_wasm_allocate" (func $1))
 (export "_wasm_free" (func $2))
 (export "start" (func $3))
 (export "__indirect_function_table" (table $0))
 (export "_initialize" (func $0))
 (export "__errno_location" (func $7))
 (export "stackSave" (func $4))
 (export "stackRestore" (func $5))
 (export "stackAlloc" (func $6))
 (func $0
  (nop)
 )
 (func $1 (param $0 i32) (result i32)
  (i32.const 0)
 )
 (func $2 (param $0 i32) (param $1 i32)
  (nop)
 )
 (func $3
  (call $fimport$0
   (i32.const 1024)
  )
 )
 (func $4 (result i32)
  (global.get $global$0)
 )
 (func $5 (param $0 i32)
  (global.set $global$0
   (local.get $0)
  )
 )
 (func $6 (param $0 i32) (result i32)
  (global.set $global$0
   (local.tee $0
    (i32.and
     (i32.sub
      (global.get $global$0)
      (local.get $0)
     )
     (i32.const -16)
    )
   )
  )
  (local.get $0)
 )
 (func $7 (result i32)
  (i32.const 1040)
 )
)

Authors

Karsten Schmidt

If this project contributes to an academic publication, please cite it as:

@misc{thing-wasm-api,
  title = "@thi.ng/wasm-api",
  author = "Karsten Schmidt",
  note = "https://thi.ng/wasm-api",
  year = 2022
}

License

© 2022 Karsten Schmidt // Apache Software License 2.0

Keywords

FAQs

Package last updated on 21 Sep 2022

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc