Security News
Supply Chain Attack Detected in @solana/web3.js Library
A supply chain attack has been detected in versions 1.95.6 and 1.95.7 of the popular @solana/web3.js library.
@xmtp/xmtp-js
Advanced tools
XMTP client SDK for JavaScript applications
xmtp-js
provides a TypeScript implementation of an XMTP client for use with JavaScript and React applications.
Build with xmtp-js
to provide messaging between blockchain wallet addresses, delivering on use cases such as wallet-to-wallet messaging and dapp-to-wallet notifications.
xmtp-js
was included in a security assessment prepared by Certik.
To learn more about XMTP and get answers to frequently asked questions, see the XMTP documentation.
xmtp-js
Use the XMTP React playground app as a tool to start building an app with XMTP. This basic messaging app has an intentionally unopinionated UI to help make it easier for you to build with.
Use the XMTP Inbox Web example app as a reference implementation to understand how to implement features following developer and user experience best practices.
Access the xmtp-js
client SDK reference documentation.
npm install @xmtp/xmtp-js
Additional configuration is required in React environments due to the removal of polyfills from Webpack 5.
If you get into issues with Buffer and polyfills check out our fix below.
Use react-scripts
prior to version 5.0.0
. For example:
npx create-react-app my-app --scripts-version 4.0.2
Or downgrade after creating your app.
In next.config.js
:
webpack: (config, { isServer }) => {
if (!isServer) {
config.resolve.fallback.fs = false
}
return config
}
The XMTP message API revolves around a network client that allows retrieving and sending messages to other network participants. A client must be connected to a wallet on startup. If this is the very first time the client is created, the client will generate a key bundle that is used to encrypt and authenticate messages. The key bundle persists encrypted in the network using a wallet signature. The public side of the key bundle is also regularly advertised on the network to allow parties to establish shared encryption keys. All this happens transparently, without requiring any additional code.
import { Client } from '@xmtp/xmtp-js'
import { Wallet } from 'ethers'
// You'll want to replace this with a wallet from your application
const wallet = Wallet.createRandom()
// Create the client with your wallet. This will connect to the XMTP development network by default
const xmtp = await Client.create(wallet)
// Start a conversation with XMTP
const conversation = await xmtp.conversations.newConversation(
'0x3F11b27F323b62B159D2642964fa27C46C841897'
)
// Load all messages in the conversation
const messages = await conversation.messages()
// Send a message
await conversation.send('gm')
// Listen for new messages in the conversation
for await (const message of await conversation.streamMessages()) {
console.log(`[${message.senderAddress}]: ${message.content}`)
}
Currently, network nodes are configured to rate limit high-volume publishing from clients. A rate-limited client can expect to receive a 429 status code response from a node. Rate limits can change at any time in the interest of maintaining network health.
Important
If you are building a production-grade app, be sure to use an architecture that includes a local cache backed by an XMTP SDK.
To learn more, see Use local-first architecture.
A client is created with Client.create(wallet: Signer): Promise<Client>
that requires passing in a connected wallet that implements the Signer interface. The client will request a wallet signature in two cases:
Important
The client connects to the XMTPdev
environment by default. UseClientOptions
to change this and other parameters of the network connection.
import { Client } from '@xmtp/xmtp-js'
// Create the client with a `Signer` from your application
const xmtp = await Client.create(wallet)
The client's network connection and key storage method can be configured with these optional parameters of Client.create
:
Parameter | Default | Description |
---|---|---|
appVersion | undefined | Add a client app version identifier that's included with API requests. For example, you can use the following format: appVersion: APP_NAME + '/' + APP_VERSION .Setting this value provides telemetry that shows which apps are using the XMTP client SDK. This information can help XMTP developers provide app support, especially around communicating important SDK updates, including deprecations and required upgrades. |
env | dev | Connect to the specified XMTP network environment. Valid values include dev , production , or local . For important details about working with these environments, see XMTP production and dev network environments. |
apiUrl | undefined | Manually specify an API URL to use. If specified, value of env will be ignored. |
keystoreProviders | [StaticKeystoreProvider, NetworkKeystoreProvider, KeyGeneratorKeystoreProvider] | Override the default behaviour of how the client creates a Keystore with a custom provider. This can be used to get the user's private keys from a different storage mechanism. |
persistConversations | true | Maintain a cache of previously seen V2 conversations in the storage provider (defaults to LocalStorage ). |
skipContactPublishing | false | Do not publish the user's contact bundle to the network on client creation. Designed to be used in cases where the client session is short-lived (for example, decrypting a push notification), and where it is known that a client instance has been instantiated with this flag set to false at some point in the past. |
codecs | [TextCodec] | Add codecs to support additional content types. |
maxContentSize | 100M | Maximum message content size in bytes. |
preCreateIdentityCallback | undefined | preCreateIdentityCallback is a function that will be called immediately before a Create Identity wallet signature is requested from the user. |
preEnableIdentityCallback | undefined | preEnableIdentityCallback is a function that will be called immediately before an Enable Identity wallet signature is requested from the user. |
Most of the time, when interacting with the network, you'll want to do it through conversations
. Conversations are between two wallets.
import { Client } from '@xmtp/xmtp-js'
// Create the client with a `Signer` from your application
const xmtp = await Client.create(wallet)
const conversations = xmtp.conversations
You can get a list of all conversations that have one or more messages.
const allConversations = await xmtp.conversations.list()
// Say gm to everyone you've been chatting with
for (const conversation of allConversations) {
console.log(`Saying GM to ${conversation.peerAddress}`)
await conversation.send('gm')
}
These conversations include all conversations for a user regardless of which app created the conversation. This functionality provides the concept of an interoperable inbox, which enables a user to access all of their conversations in any app built with XMTP.
You can also listen for new conversations being started in real-time. This will allow applications to display incoming messages from new contacts.
Warning
This stream will continue infinitely. To end the stream you can either break from the loop, or callawait stream.return()
.
const stream = await xmtp.conversations.stream()
for await (const conversation of stream) {
console.log(`New conversation started with ${conversation.peerAddress}`)
// Say hello to your new friend
await conversation.send('Hi there!')
// Break from the loop to stop listening
break
}
You can create a new conversation with any Ethereum address on the XMTP network.
const newConversation = await xmtp.conversations.newConversation(
'0x3F11b27F323b62B159D2642964fa27C46C841897'
)
To be able to send a message, the recipient must have already started their client at least once and consequently advertised their key bundle on the network. Messages are addressed using wallet addresses. The message payload can be a plain string, but other types of content can be supported through the use of SendOptions
(see Handle different types of content for more details)
const conversation = await xmtp.conversations.newConversation(
'0x3F11b27F323b62B159D2642964fa27C46C841897'
)
await conversation.send('Hello world')
You can receive the complete message history in a conversation by calling conversation.messages()
for (const conversation of await xmtp.conversations.list()) {
// All parameters are optional and can be omitted
const opts = {
// Only show messages from last 24 hours
startTime: new Date(new Date().setDate(new Date().getDate() - 1)),
endTime: new Date(),
}
const messagesInConversation = await conversation.messages(opts)
}
You can listen for any new messages (incoming or outgoing) in a conversation by calling conversation.streamMessages()
.
A successfully received message (that makes it through the decoding and decryption without throwing) can be trusted to be authentic, i.e. that it was sent by the owner of the message.senderAddress
wallet and that it wasn't modified in transit. The message.sent
timestamp can be trusted to have been set by the sender.
The Stream returned by the stream
methods is an asynchronous iterator and as such usable by a for-await-of loop. Note however that it is by its nature infinite, so any looping construct used with it will not terminate, unless the termination is explicitly initiated (by breaking the loop or by an external call to Stream.return()
)
const conversation = await xmtp.conversations.newConversation(
'0x3F11b27F323b62B159D2642964fa27C46C841897'
)
for await (const message of await conversation.streamMessages()) {
if (message.senderAddress === xmtp.address) {
// This message was sent from me
continue
}
console.log(`New message from ${message.senderAddress}: ${message.content}`)
}
To listen for any new messages from all conversations, use conversations.streamAllMessages()
.
Note
There is a chance this stream can miss messages if multiple new conversations are received in the time it takes to update the stream to include a new conversation.
for await (const message of await xmtp.conversations.streamAllMessages()) {
if (message.senderAddress === xmtp.address) {
// This message was sent from me
continue
}
console.log(`New message from ${message.senderAddress}: ${message.content}`)
}
If you would like to check and see if a blockchain address is registered on the network before instantiating a client instance, you can use Client.canMessage
.
import { Client } from '@xmtp/xmtp-js'
const isOnDevNetwork = await Client.canMessage(
'0x3F11b27F323b62B159D2642964fa27C46C841897'
)
const isOnProdNetwork = await Client.canMessage(
'0x3F11b27F323b62B159D2642964fa27C46C841897',
{ env: 'production' }
)
You can send a broadcast message (1:many message or announcement) with XMTP. The recipient sees the message as a DM from the sending wallet address.
For important information about sending broadcast messages, see Best practices for broadcast messages.
canMessage
method to identify the wallet addresses that are activated on the XMTP network.For example:
const ethers = require('ethers')
const { Client } = require('@xmtp/xmtp-js')
async function main() {
//Create a random wallet for example purposes. On the frontend you should replace it with the user's wallet (metamask, rainbow, etc)
const wallet = ethers.Wallet.createRandom()
//Initialize the xmtp client
const xmtp = await Client.create(wallet)
//In this example we are going to broadcast to the GM_BOT wallet (already activated) and a random wallet (not activated)
const GM_BOT = '0x937C0d4a6294cdfa575de17382c7076b579DC176'
const test = ethers.Wallet.createRandom()
const broadcasts_array = [GM_BOT, test.address]
//Querying the activation status of the wallets
const broadcasts_canMessage = await Client.canMessage(broadcasts_array)
for (let i = 0; i < broadcasts_array.length; i++) {
//Checking the activation status of each wallet
const wallet = broadcasts_array[i]
const canMessage = broadcasts_canMessage[i]
if (broadcasts_canMessage[i]) {
//If activated, start
const conversation = await xmtp.conversations.newConversation(wallet)
// Send a message
const sent = await conversation.send('gm')
}
}
}
main()
All send functions support SendOptions
as an optional parameter. The contentType
option allows specifying different types of content than the default simple string standard content type, which is identified with content type identifier ContentTypeText
.
To learn more about content types, see Content types with XMTP.
Support for other types of content can be added by registering additional ContentCodecs
with the Client
. Every codec is associated with a content type identifier, ContentTypeId
, which is used to signal to the client which codec should be used to process the content that is being sent or received.
For example, see the Codecs available in xmtp-js
.
If there is a concern that the recipient may not be able to handle a non-standard content type, the sender can use the contentFallback
option to provide a string that describes the content being sent. If the recipient fails to decode the original content, the fallback will replace it and can be used to inform the recipient what the original content was.
// Assuming we've loaded a fictional NumberCodec that can be used to encode numbers,
// and is identified with ContentTypeNumber, we can use it as follows.
xmtp.registerCodec:(new NumberCodec())
conversation.send(3.14, {
contentType: ContentTypeNumber,
contentFallback: 'sending you a pie'
})
As shown in the example above, you must provide a contentFallback
value. Use it to provide an alt text-like description of the original content. Providing a contentFallback
value enables clients that don't support the content type to still display something meaningful.
Caution
If you don't provide acontentFallback
value, clients that don't support the content type will display an empty message. This results in a poor user experience and breaks interoperability.
Additional codecs can be configured through the ClientOptions
parameter of Client.create
. The codecs
option is a list of codec instances that should be added to the default set of codecs (currently only the TextCodec
). If a codec is added for a content type that is already in the default set, it will replace the original codec.
// Adding support for `xmtp.org/composite` content type
import { CompositeCodec } from '@xmtp/xmtp-js'
const xmtp = Client.create(wallet, { codecs: [new CompositeCodec()] })
To learn more about how to build a custom content type, see Build a custom content type.
Custom codecs and content types may be proposed as interoperable standards through XRCs. To learn about the custom content type proposal process, see XIP-5.
Message content can be optionally compressed using the compression
option. The value of the option is the name of the compression algorithm to use. Currently supported are gzip
and deflate
. Compression is applied to the bytes produced by the content codec.
Content will be decompressed transparently on the receiving end. Note that Client
enforces maximum content size. The default limit can be overridden through the ClientOptions
. Consequently, a message that would expand beyond that limit on the receiving end will fail to decode.
import { Compression } from '@xmtp/xmtp-js'
conversation.send('#'.repeat(1000), {
compression: Compression.COMPRESSION_DEFLATE,
})
The SDK will handle key storage for the user by encrypting the private key bundle using a signature generated from the wallet, and storing the encrypted payload on the XMTP network. This can be awkward for some server-side applications, where you may only want to give the application access to the XMTP keys but not your wallet keys. Mobile applications may also want to store keys in a secure enclave rather than rely on decrypting the remote keys on the network each time the application starts up.
You can export the unencrypted key bundle using the static method Client.getKeys
, save it somewhere secure, and then provide those keys at a later time to initialize a new client using the exported XMTP identity.
import { Client } from '@xmtp/xmtp-js'
// Get the keys using a valid Signer. Save them somewhere secure.
const keys = await Client.getKeys(wallet)
// Create a client using keys returned from getKeys
const client = await Client.create(null, { privateKeyOverride: keys })
The keys returned by getKeys
should be treated with the utmost care as compromise of these keys will allow an attacker to impersonate the user on the XMTP network. Ensure these keys are stored somewhere secure and encrypted.
When running in a browser, conversations are cached in LocalStorage
by default. Running client.conversations.list()
will update that cache and persist the results to the browser's LocalStorage
. The data stored in LocalStorage
is encrypted and signed using the Keystore's identity key so that attackers cannot read the sensitive contents or tamper with them.
To disable this behavior, set the persistConversations
client option to false
.
const clientWithNoCache = await Client.create(wallet, {
persistConversations: false,
})
Because xmtp-js
is in active development, you should expect breaking revisions that might require you to adopt the latest SDK release to enable your app to continue working as expected.
XMTP communicates about breaking revisions in the XMTP Discord community, providing as much advance notice as possible. Additionally, breaking revisions in an xmtp-js
release are described on the Releases page.
Older versions of the SDK will eventually be deprecated, which means:
The following table provides the deprecation schedule.
Announced | Effective | Minimum Version | Rationale |
---|---|---|---|
2022-08-18 | 2022-11-08 | v6.0.0 | XMTP network will stop supporting the Waku/libp2p-based client interface in favor of the new gRPC-based interface |
Issues and PRs are welcome in accordance with our contribution guidelines.
production
and dev
network environmentsXMTP provides both production
and dev
network environments to support the development phases of your project.
The production
and dev
networks are completely separate and not interchangeable.
For example, for a given blockchain account address, its XMTP identity on dev
network is completely distinct from its XMTP identity on the production
network, as are the messages associated with these identities. In addition, XMTP identities and messages created on the dev
network can't be accessed from or moved to the production
network, and vice versa.
Important
When you create a client, it connects to the XMTPdev
environment by default. To learn how to use theenv
parameter to set your client's network environment, see Configure the client.
The env
parameter accepts one of three valid values: dev
, production
, or local
. Here are some best practices for when to use each environment:
dev
: Use to have a client communicate with the dev
network. As a best practice, set env
to dev
while developing and testing your app. Follow this best practice to isolate test messages to dev
inboxes.
production
: Use to have a client communicate with the production
network. As a best practice, set env
to production
when your app is serving real users. Follow this best practice to isolate messages between real-world users to production
inboxes.
local
: Use to have a client communicate with an XMTP node you are running locally. For example, an XMTP node developer can set env
to local
to generate client traffic to test a node running locally.
The production
network is configured to store messages indefinitely. XMTP may occasionally delete messages and keys from the dev
network, and will provide advance notice in the XMTP Discord community.
FAQs
XMTP client SDK for interacting with XMTP networks.
We found that @xmtp/xmtp-js demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 7 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
A supply chain attack has been detected in versions 1.95.6 and 1.95.7 of the popular @solana/web3.js library.
Research
Security News
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
Security News
Research
Socket researchers have discovered malicious npm packages targeting crypto developers, stealing credentials and wallet data using spyware delivered through typosquats of popular cryptographic libraries.