ffi-rs
A module written in Rust and N-APi provides interface (FFI) features for Node.js
Description
ffi-rs is a high performance module written in Rust and N-API that provides FFI (Foreign Function Interface) features for Node.js. It allows developers to call functions written in other languages such as C++, C, and Rust directly from JavaScript without writing any C++ code.
This module aims to provide similar functionality to the node-ffi module, but with a completely rewritten underlying codebase. The node-ffi module has been unmaintained for several years and is no longer usable, which is why ffi-rs was developed.
benchmark
$ node bench/bench.js
Running "ffi" suite...
Progress: 100%
ffi-napi:
2 028 ops/s, ±4.87% | slowest, 99.24% slower
ffi-rs:
318 467 ops/s, ±0.17% | fastest
Finished 2 cases!
Fastest: ffi-rs
Slowest: ffi-napi
install
$ npm i ffi-rs
Support type
Currently, ffi-rs only supports there types of parameters and return values. However, support for more types will be added in the future based on actual usage scenarios.
Basic Type
Reference Type
Support Platform
Note: You need to make sure that the compilation environment of the dynamic library is the same as the installation and runtime environment of the ffi-rs
call.
- darwin-x64
- darwin-arm64
- linux-x64-gnu
- win32-x64-msvc
- linux-arm64-gnu
- linux-arm64-musl
Usage
Here is an example of how to use ffi-rs:
For below c++ code, we compile this file into a dynamic library
write c/c++ code
Note: The return value type of a function must be of type c
#include <cstdio>
#include <cstring>
#include <iostream>
#include <string>
extern "C" int sum(int a, int b) { return a + b; }
extern "C" double doubleSum(double a, double b) { return a + b; }
extern "C" const char *concatenateStrings(const char *str1, const char *str2) {
std::string result = std::string(str1) + std::string(str2);
char *cstr = new char[result.length() + 1];
strcpy(cstr, result.c_str());
return cstr;
}
extern "C" void noRet() { printf("%s", "hello world"); }
extern "C" bool return_opposite(bool input) { return !input; }
compile c code to dynamic library
$ g++ -dynamiclib -o libsum.so cpp/sum.cpp
$ g++ -shared -o libsum.so cpp/sum.cpp
$ g++ -shared -o sum.dll cpp/sum.cpp
call dynamic library by ffi-rs
Then can use ffi-rs
invoke the dynamic library file contains functions.
initialization
const { equal } = require('assert')
const { load, DataType, open, close, arrayConstructor } = require('ffi-rs')
const a = 1
const b = 100
const dynamicLib = platform === 'win32' ? './sum.dll' : "./libsum.so"
open({
library: 'libsum',
path: dynamicLib
})
const r = load({
library: "libsum",
funcName: 'sum',
retType: DataType.I32,
paramsType: [DataType.I32, DataType.I32],
paramsValue: [a, b]
})
equal(r, a + b)
close('libsum')
Basic Types
number|string|boolean|double|void
are basic types
const c = "foo"
const d = c.repeat(200)
equal(c + d, load({
library: 'libsum',
funcName: 'concatenateStrings',
retType: DataType.String,
paramsType: [DataType.String, DataType.String],
paramsValue: [c, d]
}))
equal(undefined, load({
library: 'libsum',
funcName: 'noRet',
retType: DataType.Void,
paramsType: [],
paramsValue: []
}))
equal(1.1 + 2.2, load({
library: 'libsum',
funcName: 'doubleSum',
retType: DataType.Double,
paramsType: [DataType.Double, DataType.Double],
paramsValue: [1.1, 2.2]
}))
const bool_val = true
equal(!bool_val, load({
library: 'libsum',
funcName: 'return_opposite',
retType: DataType.Boolean,
paramsType: [DataType.Boolean],
paramsValue: [bool_val],
}))
Array
When use array
as retType
should use arrayConstructor
to specify array type with legal length which is important.
If the length is incorrect, program maybe exit abnormally
extern "C" int *createArrayi32(const int *arr, int size) {
int *vec = (int *)malloc((size) * sizeof(int));
for (int i = 0; i < size; i++) {
vec[i] = arr[i];
}
return vec;
}
extern "C" double *createArrayDouble(const double *arr, int size) {
double *vec = (double *)malloc((size) * sizeof(double));
for (int i = 0; i < size; i++) {
vec[i] = arr[i];
}
return vec;
}
extern "C" char **createArrayString(char **arr, int size) {
char **vec = (char **)malloc((size) * sizeof(char *));
for (int i = 0; i < size; i++) {
vec[i] = arr[i];
}
return vec;
}
let bigArr = new Array(100).fill(100)
deepStrictEqual(bigArr, load({
library: 'libsum',
funcName: 'createArrayi32',
retType: arrayConstructor({ type: DataType.I32Array, length: bigArr.length }),
paramsType: [DataType.I32Array, DataType.I32],
paramsValue: [bigArr, bigArr.length],
}))
let bigDoubleArr = new Array(5).fill(1.1)
deepStrictEqual(bigDoubleArr, load({
library: 'libsum',
funcName: 'createArrayDouble',
retType: arrayConstructor({ type: DataType.DoubleArray, length: bigDoubleArr.length }),
paramsType: [DataType.DoubleArray, DataType.I32],
paramsValue: [bigDoubleArr, bigDoubleArr.length],
}))
let stringArr = [c, c.repeat(20)]
deepStrictEqual(stringArr, load({
library: 'libsum',
funcName: 'createArrayString',
retType: arrayConstructor({ type: DataType.StringArray, length: stringArr.length }),
paramsType: [DataType.StringArray, DataType.I32],
paramsValue: [stringArr, stringArr.length],
}))
Pointer
In ffi-rs
, we use DataType.External for wrap the pointer
which makes it can be passed between Node.js
and C
.
extern "C" const char *concatenateStrings(const char *str1, const char *str2) {
std::string result = std::string(str1) + std::string(str2);
char *cstr = new char[result.length() + 1];
strcpy(cstr, result.c_str());
return cstr;
}
extern "C" char *getStringFromPtr(void *ptr) { return (char *)ptr; };
const ptr = load({
library: "libsum",
funcName: "concatenateStrings",
retType: DataType.External,
paramsType: [DataType.String, DataType.String],
paramsValue: [c, d],
})
const string = load({
library: "libsum",
funcName: "getStringFromPtr",
retType: DataType.String,
paramsType: [DataType.External],
paramsValue: [ptr],
})
Struct
For create a c struct or get a c struct as a return type, you need to define the types of the parameters strictly in the order in which the fields of the c structure are defined.
typedef struct Person {
int age;
double *doubleArray;
Person *parent;
double doubleProps;
const char *name;
char **stringArray;
int *i32Array;
bool boolTrue;
bool boolFalse;
int64_t longVal;
char byte;
char *byteArray;
} Person;
extern "C" Person *getStruct(Person *person) {
return person;
}
extern "C" Person *createPerson() {
Person *person = (Person *)malloc(sizeof(Person));
double initDoubleArray[] = {1.1, 2.2, 3.3};
person->doubleArray = (double *)malloc(sizeof(initDoubleArray));
memcpy(person->doubleArray, initDoubleArray, sizeof(initDoubleArray));
person->age = 23;
person->doubleProps = 1.1;
person->byte = 'A';
person->name = strdup("tom");
char *stringArray[] = {strdup("tom")};
person->stringArray = (char **)malloc(sizeof(stringArray));
memcpy(person->stringArray, stringArray, sizeof(stringArray));
char initByteArray[] = {101, 102};
person->byteArray = (char *)malloc(sizeof(initByteArray));
memcpy(person->byteArray, initByteArray, sizeof(initByteArray));
int initI32Array[] = {1, 2, 3, 4};
person->i32Array = (int *)malloc(sizeof(initI32Array));
memcpy(person->i32Array, initI32Array, sizeof(initI32Array));
person->boolTrue = true;
person->boolFalse = false;
person->longVal = 4294967296;
person->parent = (Person *)malloc(sizeof(Person));
double parentDoubleArray[] = {1.1, 2.2, 3.3};
person->parent->doubleArray = (double *)malloc(sizeof(parentDoubleArray));
memcpy(person->parent->doubleArray, parentDoubleArray,
sizeof(parentDoubleArray));
person->parent->age = 43;
person->parent->doubleProps = 3.3;
person->parent->name = strdup("tom father");
char *pstringArray[] = {strdup("tom"), strdup("father")};
person->parent->stringArray = (char **)malloc(sizeof(pstringArray));
memcpy(person->parent->stringArray, pstringArray, sizeof(pstringArray));
int parentI32Array[] = {5, 6, 7};
person->parent->i32Array = (int *)malloc(sizeof(parentI32Array));
memcpy(person->parent->i32Array, parentI32Array, sizeof(parentI32Array));
person->parent->boolTrue = true;
person->parent->boolFalse = false;
person->parent->longVal = 5294967296;
person->parent->byte = 'B';
char parentByteArray[] = {103, 104};
person->parent->byteArray = (char *)malloc(sizeof(parentByteArray));
memcpy(person->parent->byteArray, parentByteArray, sizeof(parentByteArray));
return person;
}
const parent = {
age: 43,
doubleArray: [1.1, 2.2, 3.3],
parent: {},
doubleProps: 3.3,
name: "tom father",
stringArray: ["tom", "father"],
i32Array: [5, 6, 7],
boolTrue: true,
boolFalse: false,
longVal: 5294967296,
byte: 66,
byteArray: [103, 104],
};
const person = {
age: 23,
doubleArray: [1.1, 2.2, 3.3],
parent,
doubleProps: 1.1,
name: "tom",
stringArray: ["tom"],
i32Array: [1, 2, 3, 4],
boolTrue: true,
boolFalse: false,
longVal: 4294967296,
byte: 65,
byteArray: [101, 102],
};
const parentType = {
age: DataType.I32,
doubleArray: arrayConstructor({
type: DataType.DoubleArray,
length: parent.doubleArray.length,
}),
parent: {},
doubleProps: DataType.Double,
name: DataType.String,
stringArray: arrayConstructor({
type: DataType.StringArray,
length: parent.stringArray.length,
}),
i32Array: arrayConstructor({
type: DataType.I32Array,
length: parent.i32Array.length,
}),
boolTrue: DataType.Boolean,
boolFalse: DataType.Boolean,
longVal: DataType.I64,
byte: DataType.U8,
byteArray: arrayConstructor({
type: DataType.U8Array,
length: parent.byteArray.length,
}),
};
const personType = {
age: DataType.I32,
doubleArray: arrayConstructor({
type: DataType.DoubleArray,
length: person.doubleArray.length,
}),
parent: parentType,
doubleProps: DataType.Double,
name: DataType.String,
stringArray: arrayConstructor({
type: DataType.StringArray,
length: person.stringArray.length,
}),
i32Array: arrayConstructor({
type: DataType.I32Array,
length: person.i32Array.length,
}),
boolTrue: DataType.Boolean,
boolFalse: DataType.Boolean,
longVal: DataType.I64,
byte: DataType.U8,
byteArray: arrayConstructor({
type: DataType.U8Array,
length: person.byteArray.length,
}),
};
const personObj = load({
library: "libsum",
funcName: "getStruct",
retType: personType,
paramsType: [
{
age: DataType.I32,
doubleArray: DataType.DoubleArray,
parent: {
parent: {},
age: DataType.I32,
doubleProps: DataType.Double,
name: DataType.String,
stringArray: DataType.StringArray,
doubleArray: DataType.DoubleArray,
i32Array: DataType.I32Array,
boolTrue: DataType.Boolean,
boolFalse: DataType.Boolean,
longVal: DataType.I64,
byte: DataType.U8,
byteArray: DataType.U8Array,
},
doubleProps: DataType.Double,
name: DataType.String,
stringArray: DataType.StringArray,
i32Array: DataType.I32Array,
boolTrue: DataType.Boolean,
boolFalse: DataType.Boolean,
longVal: DataType.I64,
byte: DataType.U8,
byteArray: DataType.U8Array,
},
],
paramsValue: [person],
});
deepStrictEqual(person, personObj);
const createdPerson = load({
library: "libsum",
funcName: "createPerson",
retType: personType,
paramsType: [],
paramsValue: [],
});
deepStrictEqual(createdPerson, person);
Function
ffi-rs
supports passing js function to c, like this
typedef void (*FunctionPointer)(int a, bool b, char *c, char **d, int *e,
Person *p);
extern "C" void callFunction(FunctionPointer func) {
printf("callFunction\n");
for (int i = 0; i < 2; i++) {
int a = 100;
bool b = false;
double ddd = 100.11;
char *c = (char *)malloc(14 * sizeof(char));
strcpy(c, "Hello, World!");
char **stringArray = (char **)malloc(sizeof(char *) * 2);
stringArray[0] = strdup("Hello");
stringArray[1] = strdup("world");
int *i32Array = (int *)malloc(sizeof(int) * 3);
i32Array[0] = 101;
i32Array[1] = 202;
i32Array[2] = 303;
Person *p = createPerson();
func(a, b, c, stringArray, i32Array, p);
}
}
Corresponds to the code above,you can use ffi-rs
like
let count = 0;
const func = (a, b, c, d, e, f) => {
equal(a, 100);
equal(b, false);
equal(c, "Hello, World!");
deepStrictEqual(d, ["Hello", "world"]);
deepStrictEqual(e, [101, 202, 303]);
deepStrictEqual(f, person);
console.log("callback called");
count++;
if (count === 2) {
console.log("test succeed");
process.exit(0);
}
};
load({
library: "libsum",
funcName: "callFunction",
retType: DataType.Void,
paramsType: [
funcConstructor({
paramsType: [
DataType.I32,
DataType.Boolean,
DataType.String,
arrayConstructor({ type: DataType.StringArray, length: 2 }),
arrayConstructor({ type: DataType.I32Array, length: 3 }),
personType,
],
retType: DataType.Void,
}),
],
paramsValue: [func],
});
The function parameters supports type are all in the example above (double type is unsupported at this time), we will support more types in the future
Attention,since the vast majority of scenaros developers pass js function to c as a callback, so ffi-rs
will create threadsafe_function from jsfunction which means the jsfunction will be called asynchronous, and Node.js process will not be exited automatically