Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

abstract-syntax-tree

Package Overview
Dependencies
Maintainers
2
Versions
67
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

abstract-syntax-tree

abstract syntax tree

  • 2.21.2
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
13K
decreased by-23.73%
Maintainers
2
Weekly downloads
 
Created
Source

abstract-syntax-tree

npm build

A library for working with abstract syntax trees.

Table of Contents

Background

An abstract syntax tree is a way to represent the source code. In case of this library it is represented in the estree format.

For example, the following source code:

const answer = 42

Has the following representation:

{
  "type": "Program",
  "body": [
    {
      "type": "VariableDeclaration",
      "declarations": [
        {
          "type": "VariableDeclarator",
          "id": {
            "type": "Identifier",
            "name": "answer"
          },
          "init": {
            "type": "Literal",
            "value": 42
          }
        }
      ],
      "kind": "const"
    }
  ]
}

The goal of this library is to consolidate common abstract syntax tree operations in one place. It uses a variety of libraries under the hood based on their performance and flexibility, e.g. meriyah for parsing and astring for source code generation.

The library exposes a set of utility methods that can be useful for analysis or transformation of abstract syntax trees. It supports functional and object-oriented programming style.

Install

npm install abstract-syntax-tree

Usage

const { parse, find } = require("abstract-syntax-tree")
const source = "const answer = 42"
const tree = parse(source)
console.log(find(tree, "Literal")) // [ { type: 'Literal', value: 42 } ]
const AbstractSyntaxTree = require("abstract-syntax-tree")
const source = "const answer = 42"
const tree = new AbstractSyntaxTree(source)
console.log(tree.find("Literal")) // [ { type: 'Literal', value: 42 } ]

API

Static Methods

parse

The library uses meriyah to create an estree compatible abstract syntax tree. All meriyah parsing options can be passed to the parse method.

const { parse } = require("abstract-syntax-tree")
const source = "const answer = 42"
const tree = parse(source)
console.log(tree) // { type: 'Program', body: [ ... ] }
const { parse } = require("abstract-syntax-tree")
const source = "const answer = 42"
const tree = parse(source, {
  loc: true,
  ranges: true,
})
console.log(tree) // { type: 'Program', body: [ ... ], loc: {...} }
generate

The library uses astring to generate the source code. All astring generate options can be passed to the generate method.

const { parse, generate } = require("abstract-syntax-tree")
const source = "const answer = 42"
const tree = parse(source)
console.log(generate(tree)) // 'const answer = 42;'
walk

Walk method is a thin layer over estraverse.

const { parse, walk } = require("abstract-syntax-tree")
const source = "const answer = 42"
const tree = parse(source)
walk(tree, (node, parent) => {
  console.log(node)
  console.log(parent)
})
find

Find supports two traversal methods. You can pass a string selector or pass an object that will be compared to every node in the tree. The method returns an array of nodes.

The following selectors are supported:

  • node type (Identifier)
  • node attribute ([name="foo"])
  • node attribute existence ([name])
  • wildcard (*)
const { parse, find } = require("abstract-syntax-tree")
const source = "const answer = 42"
const tree = parse(source)
console.log(find(tree, "VariableDeclaration")) // [ { type: 'VariableDeclaration', ... } ]
console.log(find(tree, { type: "VariableDeclaration" })) // [ { type: 'VariableDeclaration', ... } ]
serialize

Serialize can transform nodes into values. Works for: Array, Boolean, Error, Infinity, Map, NaN, Number, Object, RegExp, Set, String, Symbol, WeakMap, WeakSet, null and undefined.

const { serialize } = require("abstract-syntax-tree")
const node = {
  type: "ArrayExpression",
  elements: [
    { type: "Literal", value: 1 },
    { type: "Literal", value: 2 },
    { type: "Literal", value: 3 },
    { type: "Literal", value: 4 },
    { type: "Literal", value: 5 },
  ],
}
const array = serialize(node) // [1, 2, 3, 4, 5]
traverse

Traverse method accepts a configuration object with enter and leave callbacks. It allows multiple transformations in one traversal.

const { parse, traverse } = require("abstract-syntax-tree")
const source = "const answer = 42"
const tree = parse(source)
traverse(tree, {
  enter(node) {},
  leave(node) {},
})
replace

Replace extends estraverse by handling replacement of give node with multiple nodes. It will also remove given node if null is returned.

const { parse, replace } = require("abstract-syntax-tree")
const source = "const answer = 42"
const tree = parse(source)
replace(tree, (node) => {
  if (node.type === "VariableDeclaration") {
    node.kind = "let"
  }
  return node
})
remove

Remove uses estraverse and ensures that no useless nodes are left in the tree. It accepts a string, object or callback as the matching strategy.

const { parse, remove, generate } = require("abstract-syntax-tree")
const source = '"use strict"; const b = 4;'
const tree = parse(source)
remove(tree, 'Literal[value="use strict"]')

// or
// remove(tree, { type: 'Literal', value: 'use strict' })

// or
// remove(tree, (node) => {
//   if (node.type === 'Literal' && node.value === 'use strict') return null
//   return node
// })

console.log(generate(tree)) // 'const b = 4;'
each
const { parse, each } = require("abstract-syntax-tree")
const source = "const foo = 1; const bar = 2;"
const tree = parse(source)
each(tree, "VariableDeclaration", (node) => {
  console.log(node)
})
first
const { parse, first } = require("abstract-syntax-tree")
const source = "const answer = 42"
const tree = parse(source)
console.log(first(tree, "VariableDeclaration")) // { type: 'VariableDeclaration', ... }
last
const { parse, last } = require("abstract-syntax-tree")
const source = "const answer = 42"
const tree = parse(source)
console.log(last(tree, "VariableDeclaration")) // { type: 'VariableDeclaration', ... }
reduce
const { parse, reduce } = require("abstract-syntax-tree")
const source = "const a = 1, b = 2"
const tree = parse(source)
const value = reduce(
  tree,
  (sum, node) => {
    if (node.type === "Literal") {
      sum += node.value
    }
    return sum
  },
  0
)
console.log(value) // 3
has
const { parse, has } = require("abstract-syntax-tree")
const source = "const answer = 42"
const tree = parse(source)
console.log(has(tree, "VariableDeclaration")) // true
console.log(has(tree, { type: "VariableDeclaration" })) // true
count
const { parse, count } = require("abstract-syntax-tree")
const source = "const answer = 42"
const tree = parse(source)
console.log(count(tree, "VariableDeclaration")) // 1
console.log(count(tree, { type: "VariableDeclaration" })) // 1
append

Append pushes nodes to the body of the abstract syntax tree. It accepts estree nodes as input.

const { parse, append } = require("abstract-syntax-tree")
const source = "const answer = 42"
const tree = parse(source)
append(tree, {
  type: "ExpressionStatement",
  expression: {
    type: "CallExpression",
    callee: {
      type: "MemberExpression",
      object: {
        type: "Identifier",
        name: "console",
      },
      property: {
        type: "Identifier",
        name: "log",
      },
      computed: false,
    },
    arguments: [
      {
        type: "Identifier",
        name: "answer",
      },
    ],
  },
})

Strings will be converted into abstract syntax tree under the hood. Please note that this approach might make the code run a bit slower due to an extra interpretation step.

const { parse, append } = require("abstract-syntax-tree")
const source = "const answer = 42"
const tree = parse(source)
append(tree, "console.log(answer)")
prepend

Prepend unshifts nodes to the body of the abstract syntax tree. Accepts estree nodes or strings as input, same as append.

const { parse, prepend } = require("abstract-syntax-tree")
const source = "const a = 1;"
const tree = parse(source)
prepend(tree, {
  type: "ExpressionStatement",
  expression: {
    type: "Literal",
    value: "use strict",
  },
})
equal
const { equal } = require("abstract-syntax-tree")
console.log(
  equal({ type: "Literal", value: 42 }, { type: "Literal", value: 42 })
) // true
console.log(
  equal({ type: "Literal", value: 41 }, { type: "Literal", value: 42 })
) // false
match
const { match } = require("abstract-syntax-tree")
console.log(match({ type: "Literal", value: 42 }, "Literal[value=42]")) // true
console.log(match({ type: "Literal", value: 41 }, "Literal[value=42]")) // false
template

The function converts the input to an equivalent abstract syntax tree representation.

const { template } = require("abstract-syntax-tree")
const literal = template(42)
const nodes = template("const foo = <%= bar %>;", {
  bar: { type: "Literal", value: 1 },
})
const { template } = require("abstract-syntax-tree")
const nodes = template("function foo(%= bar %) {}", {
  bar: [
    { type: "Identifier", name: "baz" },
    { type: "Identifier", name: "qux" },
  ],
})
program

Creates an abstract syntax tree with a blank program.

const { program } = require("abstract-syntax-tree")
const tree = program() // { type: 'Program', sourceType: 'module', body: [] }
iife

Creates an abstract syntax tree for an immediately invoked function expression.

const { iife } = require("abstract-syntax-tree")
const node = iife() // { type: 'ExpressionStatement', expression: { ... } }

Instance Methods

Almost all of the static methods (excluding parse, generate, template and match) have their instance equivalents. There are few extra instance methods:

mark
const AbstractSyntaxTree = require("abstract-syntax-tree")
const tree = new AbstractSyntaxTree("const a = 1")
tree.mark()
console.log(tree.first("Program").cid) // 1
console.log(tree.first("VariableDeclaration").cid) // 2
wrap
const AbstractSyntaxTree = require("abstract-syntax-tree")
const source = "const a = 1"
const tree = new AbstractSyntaxTree(source)
tree.wrap((body) => {
  return [
    {
      type: "ExpressionStatement",
      expression: {
        type: "CallExpression",
        callee: {
          type: "FunctionExpression",
          params: [],
          body: {
            type: "BlockStatement",
            body,
          },
        },
        arguments: [],
      },
    },
  ]
})
unwrap
const AbstractSyntaxTree = require("abstract-syntax-tree")
const source = "(function () { console.log(1); }())"
const tree = new AbstractSyntaxTree(source)
tree.unwrap()
console.log(tree.source) // console.log(1);

Getters

body

Gives the body of the root node.

source

Gives access to the source code representation of the abstract syntax tree.

const AbstractSyntaxTree = require("abstract-syntax-tree")
const source = 'const foo = "bar";'
const tree = new AbstractSyntaxTree(source)
console.log(tree.source) // const foo = "bar";
map

Gives the source map of the source code.

Setters

body

Sets the body of the root node.

Transformations

toBinaryExpression
const { toBinaryExpression } = require("abstract-syntax-tree")
const expression = {
  type: "ArrayExpression",
  elements: [
    { type: "Literal", value: "foo" },
    { type: "Literal", value: "bar" },
    { type: "Literal", value: "baz" },
  ],
}
console.log(toBinaryExpression(expression)) // { type: 'BinaryExpression', ... }

Nodes

You can also use classes to create nodes.

const { ArrayExpression, Literal } = require("abstract-syntax-tree")
const expression = new ArrayExpression([
  new Literal("foo"),
  new Literal("bar"),
  new Literal("baz"),
])

Here's a list of all available nodes, with examples.

TypeExample
ArrayExpressionconst foo = []
ArrayPatternconst [foo, bar] = bar
ArrowFunctionExpression(() => {})
AssignmentExpressionfoo = bar
AssignmentOperator
AssignmentPatternfunction foo(bar = baz) {}
AwaitExpression(async () => { await foo() })()
BigIntLiteral
BinaryExpressionfoo + bar
BinaryOperator
BlockStatement{ console.log(foo) }
BreakStatementfor (foo in bar) break
CallExpressionfoo()
CatchClausetry {} catch (error) {}
ChainElement
ChainExpressionfoo?.()
Class
ClassBodyclass Foo {}
ClassDeclarationclass Foo {}
ClassExpression(class {})
ConditionalExpressionfoo ? bar : baz
ContinueStatementwhile(true) { continue }
DebuggerStatementdebugger
Declaration
Directive
DoWhileStatementdo {} while (true) {}
EmptyStatement;
ExportAllDeclarationexport * from "foo"
ExportDefaultDeclarationexport default foo
ExportNamedDeclarationexport { foo as bar }
ExportSpecifierexport { foo }
Expression
ExpressionStatementfoo
ForInStatementfor (foo in bar) {}
ForOfStatementfor (foo of bar) {}
ForStatementfor (let i = 0; i < 10; i ++) {}
Function
FunctionBody
FunctionDeclarationfunction foo () {}
FunctionExpression(function () {})
Identifierfoo
IfStatementif (foo) {}
ImportDeclarationimport "foo"
ImportDefaultSpecifierimport foo from "bar"
ImportExpressionimport(foo).then(bar)
ImportNamespaceSpecifierimport * as foo from "bar"
ImportSpecifierimport { foo } from "bar"
LabeledStatementlabel: foo
Literal42
LogicalExpressiontrue && false
LogicalOperator
MemberExpressionfoo.bar
MetaPropertyfunction foo () { new.target }
MethodDefinitionclass Foo { bar() {} }
ModuleDeclaration
ModuleSpecifier
NewExpressionnew Foo()
Node
ObjectExpression({})
ObjectPatternfunction foo ({}) {}
Pattern
Position
Program42
Property
RegExpLiteral
RestElementfunction foo (...bar) {}
ReturnStatementfunction foo () { return bar }
SequenceExpressionfoo, bar
SourceLocation
SpreadElement
Statement
Superclass Foo extends Bar { constructor() { super() } }
SwitchCaseswitch (foo) { case 'bar': }
SwitchStatementswitch(foo) {}
TaggedTemplateExpressioncss.foo { color: red; }
TemplateLiteralcss.foo { color: red; }
ThisExpressionthis.foo = 'bar'
ThrowStatementthrow new Error("foo")
TryStatementtry { foo() } catch (exception) { bar() }
UnaryExpression!foo
UnaryOperator
UpdateExpressionfoo++
UpdateOperator
VariableDeclarationconst answer = 42
VariableDeclaratorconst foo = 'bar'
WhileStatementwhile (true) {}
WithStatementwith (foo) {}
YieldExpressionfunction* foo() { yield bar }

Optimizations

How can you optimize an abstract syntax tree?

Abstract syntax tree is a tree-like structure that represents your program. The program is interpreted at some point, e.g. in your browser. Everything takes time, and the same applies to the interpretation. Some of the operations, e.g. adding numbers can be done at compile time, so that the interpreter has less work to do. Having less work to do means that your program will run faster.

Usage

const { binaryExpressionReduction } = require("abstract-syntax-tree")

What optimization techniques are available?

binaryExpressionReduction
const number = 2 + 2

In the example above we have added two numbers. We could optimize the code by:

const number = 4

The tree would be translated from:

{
  "type": "BinaryExpression",
  "operator": "+",
  "left": { "type": "Literal", "value": 2 },
  "right": { "type": "Literal", "value": 2 }
}

to

{ "type": "Literal", "value": 4 }
ifStatementRemoval
if (true) {
  console.log("foo")
} else {
  console.log("bar")
}

It seems that we'll only enter the true path. We can simplify the code to:

console.log("foo")

The tree would be translated from:

{
  "type": "IfStatement",
  "test": {
    "type": "Literal",
    "value": true
  },
  "consequent": {
    "type": "BlockStatement",
    "body": [
      {
        "type": "ExpressionStatement",
        "expression": {
          "type": "CallExpression",
          "callee": {
            "type": "MemberExpression",
            "object": {
              "type": "Identifier",
              "name": "console"
            },
            "property": {
              "type": "Identifier",
              "name": "log"
            },
            "computed": false
          },
          "arguments": [
            {
              "type": "Literal",
              "value": "foo"
            }
          ]
        }
      }
    ]
  },
  "alternate": {
    "type": "BlockStatement",
    "body": [
      {
        "type": "ExpressionStatement",
        "expression": {
          "type": "CallExpression",
          "callee": {
            "type": "MemberExpression",
            "object": {
              "type": "Identifier",
              "name": "console"
            },
            "property": {
              "type": "Identifier",
              "name": "log"
            },
            "computed": false
          },
          "arguments": [
            {
              "type": "Literal",
              "value": "bar"
            }
          ]
        }
      }
    ]
  }
}

to:

{
        "type": "CallExpression",
        "callee": {
          "type": "MemberExpression",
          "object": {
            "type": "Identifier",
            "name": "console"
          },
          "property": {
            "type": "Identifier",
            "name": "log"
          },
          "computed": false
        },
        "arguments": [
          {
            "type": "Literal",
            "value": "foo"
          }
        ]
      }
negationOperatorRemoval
if (!(foo === bar)) {
  console.log("foo")
}

It seems that our negation operator could be a part of the condition inside the brackets.

if (foo !== bar) {
  console.log("foo")
}

The tree would be translated from:

{
  "type": "UnaryExpression",
  "operator": "!",
  "prefix": true,
  "argument": {
    "type": "BinaryExpression",
    "left": {
      "type": "Identifier",
      "name": "foo"
    },
    "operator": "===",
    "right": {
      "type": "Identifier",
      "name": "bar"
    }
  }
}

to

{
  "type": "BinaryExpression",
  "left": {
    "type": "Identifier",
    "name": "foo"
  },
  "operator": "!==",
  "right": {
    "type": "Identifier",
    "name": "bar"
  }
}
logicalExpressionReduction
const foo = "bar" || "baz"

The first value is truthy so it's safe to simplify the code.

const foo = "bar"

The tree would be translated from:

{
  "type": "LogicalExpression",
  "left": {
    "type": "Literal",
    "value": "bar"
  },
  "operator": "||",
  "right": {
    "type": "Literal",
    "value": "baz"
  }
}

To:

{
  "type": "Literal",
  "value": "bar"
}
ternaryOperatorReduction
const foo = true ? "bar" : "baz"

Given a known value of the conditional expression it's possible to get the right value immediately.

const foo = "bar"

The tree would be translated from:

{
  "type": "ConditionalExpression",
  "test": {
    "type": "Literal",
    "value": true
  },
  "consequent": {
    "type": "Literal",
    "value": "bar"
  },
  "alternate": {
    "type": "Literal",
    "value": "baz"
  }
}

To:

{
  "type": "Literal",
  "value": "bar"
}
typeofOperatorReduction
const foo = typeof "bar"

It's possible to determine the type of some variables during analysis.

const foo = "string"

The tree would be translated from:

{
  "type": "UnaryExpression",
  "operator": "typeof",
  "prefix": true,
  "argument": {
    "type": "Literal",
    "value": "foo"
  }
}

To:

{
  "type": "Literal",
  "value": "string"
}
memberExpressionReduction
const foo = { bar: "baz" }.bar

Given an inlined object expression it's possible to retrieve the value immediately.

const foo = "baz"

The tree would be translated from:

{
  "type": "MemberExpression",
  "object": {
    "type": "ObjectExpression",
    "properties": [
      {
        "type": "Property",
        "method": false,
        "shorthand": false,
        "computed": false,
        "key": {
          "type": "Identifier",
          "name": "bar"
        },
        "value": {
          "type": "Literal",
          "value": "baz"
        },
        "kind": "init"
      }
    ]
  },
  "property": {
    "type": "Identifier",
    "name": "baz"
  },
  "computed": false
}

To:

{
  "type": "Literal",
  "value": "baz"
}

Browser

The library is not intended to work inside of a browser. This might change in the future, but it's a bigger lift, pretty time consuming. For now, consider exposing and using an API endpoint instead.

Maintainers

@emilos.

Contributing

All contributions are highly appreciated! Open an issue or a submit PR.

The lib follows the tdd approach and is expected to have a high code coverage. Please follow the Contributor Covenant Code of Conduct.

License

MIT © buxlabs

Keywords

FAQs

Package last updated on 26 Mar 2024

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc