adnn.ts
adnn.ts provides TypeSafe Javascript-native neural networks on top of general scalar/tensor reverse-mode automatic differentiation. You can use just the AD code, or the NN layer built on top of it. This architecture makes it easy to define big, complex numerical computations and compute derivatives w.r.t. their inputs/parameters. adnn also includes utilities for optimizing/training the parameters of such computations.
![Minified and Gzipped Package Size](https://img.shields.io/bundlephobia/minzip/adnn.ts)
This is Typescript wrapper on top of adnn
Features
- Support reverse-mode automatic differentiation
- Static Type Checking and Completion with Typescript
- Isomorphic package: works in Node.js and browsers
- Javascript-native (without clumsome native dependencies, no node-gpy, no cmake, no python, no cuda)
Installation
npm install adnn.ts
You can also install adnn.ts
with pnpm, yarn, or slnpm
Usage Example
Scalar code
The simplest use case for adnn:
import { ScalarNode, ad, scalar } from 'adnn.ts'
function dist(x1: number, y1: number, x2: number, y2: number): number
function dist(x1: scalar, y1: scalar, x2: scalar, y2: scalar): ScalarNode
function dist(x1: scalar, y1: scalar, x2: scalar, y2: scalar): scalar {
var xdiff = ad.scalar.sub(x1, x2)
var ydiff = ad.scalar.sub(y1, y2)
return ad.scalar.sqrt(
ad.scalar.add(ad.scalar.mul(xdiff, xdiff), ad.scalar.mul(ydiff, ydiff)),
)
}
var number_output = dist(0, 1, 1, 4)
console.log(number_output)
var x1 = ad.lift(0)
var y1 = ad.lift(1)
var x2 = ad.lift(1)
var y2 = ad.lift(4)
var scalar_output = dist(x1, y1, x2, y2)
console.log(ad.value(scalar_output))
scalar_output.backprop()
console.log(ad.derivative(x1))
Tensor code
adnn also supports computations involving tensors, or a mixture of scalars and tensors:
import { Tensor, TensorNode, ad } from 'adnn.ts'
function dot(vec: TensorNode) {
var sq = ad.tensor.mul(vec, vec)
return ad.tensor.sumreduce(sq)
}
function dist(vec1: TensorNode, vec2: TensorNode) {
return ad.scalar.sqrt(dot(ad.tensor.sub(vec1, vec2)))
}
var vec1 = ad.lift(new Tensor([3]).fromFlatArray([0, 1, 1]))
var vec2 = ad.lift(new Tensor([3]).fromFlatArray([2, 0, 3]))
var out = dist(vec1, vec2)
console.log(ad.value(out))
out.backprop()
console.log(ad.derivative(vec1).toFlatArray())
Simple neural network
adnn makes it easy to define simple, feedforward neural networks. Here's a basic multilayer perceptron that takes a feature vector as input and outputs class probabilities:
import { Tensor, TrainingData, nn, opt } from 'adnn.ts'
var nInputs = 20
var nHidden = 10
var nClasses = 5
var net = nn.sequence([
nn.linear(nInputs, nHidden),
nn.tanh,
nn.linear(nHidden, nClasses),
nn.softmax,
])
net = nn.sequence([
nn.mlp(nInputs, [{ nOut: nHidden, activation: nn.tanh }, { nOut: nClasses }]),
nn.softmax,
])
var trainingData = loadData(100)
opt.nnTrain(net, trainingData, opt.classificationLoss, {
batchSize: 10,
iterations: 100,
method: opt.adagrad(),
})
var features = new Tensor([nInputs]).fillRandom()
var classProbs = net.eval(features)
console.log({ features, classProbs })
function loadData(sampleSize: number): TrainingData {
return new Array(sampleSize).fill(0).map(() => ({
input: new Tensor([nInputs]).fillRandom(),
output: Math.floor(Math.random() * nClasses),
}))
}
Below sections are still working in progress, you can read the js version in the meanwhile.
Convolutional neural network
js version
Recurrent neural network
js version
The ad
module
The ad
module has its own documentation here
The nn
module
The nn
module has its own documentation here
The opt
module
The opt
module has its own documentation here
Tensors
js version
Typescript Signature
Details see adnn.ts
License
This project is licensed with BSD-2-Clause
This is free, libre, and open-source software. It comes down to four essential freedoms [ref]:
- The freedom to run the program as you wish, for any purpose
- The freedom to study how the program works, and change it so it does your computing as you wish
- The freedom to redistribute copies so you can help others
- The freedom to distribute copies of your modified versions to others