Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

aframe-physics-system

Package Overview
Dependencies
Maintainers
1
Versions
28
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

aframe-physics-system

Physics system for A-Frame VR, built on Cannon.js

  • 1.0.2
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
80
decreased by-46.31%
Maintainers
1
Weekly downloads
 
Created
Source

Physics for A-Frame VR

Components for A-Frame physics integration, built on CANNON.js.

d6590832-8bdb-11e6-9336-658b00bc0460 3

Image credit @andgokevin.

Components

The dynamic-body and static-body components may be added to any <a-entity/> that contains a mesh. Generally, each scene will have at least one static-body for the ground, and one or more dynamic-body instances that the player can interact with.

  • dynamic-body: A freely-moving object. Dynamic bodies have mass, collide with other objects, bounce or slow during collisions, and fall if gravity is enabled.
  • static-body: A fixed-position or animated object. Other objects may collide with static bodies, but static bodies themselves are unaffected by gravity and collisions.

Basic Usage

<!-- The debug:true option creates a wireframe around each physics body. If you don't see a wireframe,
     the physics system may be unable to parse your model without a shape:box or shape:hull option. -->
<a-scene physics="debug: true">

  <!-- Camera -->
  <a-entity camera universal-controls kinematic-body></a-entity>

  <!-- Floor -->
  <a-grid static-body></a-grid>

  <!-- Immovable box -->
  <a-box static-body position="0 0.5 -5" width="3" height="1" depth="1"></a-box>

  <!-- Dynamic box -->
  <a-box dynamic-body position="5 0.5 0" width="1" height="1" depth="1"></a-box>

</a-scene>

Using the CANNON.js API

For more advanced physics, use the CANNON.js API with custom JavaScript and A-Frame components. The CANNON.js documentation and source code offer good resources for learning to work with physics in JavaScript.

In A-Frame, each entity's CANNON.Body instance is exposed on the el.body property. To apply a quick push to an object, you might do the following:

<a-scene>
  <a-entity id="nyan" dynamic-body="shape: hull" obj-model="obj: url(nyan-cat.obj)"></a-entity>
  <a-grid static-body><a/grid>
</a-scene>
var el = sceneEl.querySelector('#nyan');
el.body.applyImpulse(
  /* impulse */        new CANNON.Vec3(0, 1, -1),
  /* world position */ new CANNON.Vec3().copy(el.getComputedAttribute('position'))
);

Body Shapes

Body components will attempt to find an appropriate CANNON.js shape to fit your model. When defining an object you may choose a shape or leave the default, auto. Select a shape carefully, as there are performance implications with different choices:

  • Auto (auto) – Chooses automatically from the available shapes.
  • Box (box) – Great performance, compared to Hull or Trimesh shapes, and may be fitted to custom models.
  • Cylinder (cylinder) – See box. Adds cylinderAxis option.
  • Sphere (sphere) – See box. Adds sphereRadius option.
  • Convex (hull) – Wraps a model like shrink-wrap. Convex shapes are more performant and better supported than Trimesh, but may still have some performance impact when used as dynamic objects.
  • Primitives – Plane/Cylinder/Sphere. Used automatically with the corresponding A-Frame primitives.
  • TrimeshDeprecated. Not available as a custom shape, but may be chosen as a last resort for custom geometry. Trimeshes adapt to fit custom geometry (e.g. a .OBJ or .DAE file), but have very minimal support. Arbitrary trimesh shapes are difficult to model in any JS physics engine, will "fall through" certain other shapes, and have serious performance limitations.
  • CompoundIn progress. Compound shapes require a bit of work to set up, but allow you to use multiple primitives to define a physics shape around custom models. These will generally perform better, and behave more accurately, than Trimesh or Convex shapes. For example, a stool might be modeled as a cylinder-shaped seat, on four long cylindrical legs.

For more details, see the CANNON.js collision matrix.

Example using a bounding box for a custom model:

<!-- Box -->
<a-entity obj-model="obj: url(...)" dynamic-body="shape: box; mass: 2"></a-entity>

<!-- Cylinder -->
<a-entity obj-model="obj: url(...)" dynamic-body="shape: cylinder; cylinderAxis: y; mass: 5"></a-entity>

Collision Events

CANNON.js generates events when a collision is detected, which are propagated onto the associated A-Frame entity. Example:

var playerEl = document.querySelector('[camera]');
playerEl.addEventListener('collide', function (e) {
  console.log('Player has collided with body #' + e.detail.body.id);

  e.detail.target.el;  // Original entity (playerEl).
  e.detail.body.el;    // Other entity, which playerEl touched.
  e.detail.contact;    // Stats about the collision (CANNON.ContactEquation).
  e.detail.contact.ni; // Normal (direction) of the collision (CANNON.Vec3).
});

Note that CANNON.js cannot perfectly detect collisions with very fast-moving bodies. Doing so requires Continuous Collision Detection, which can be both slow and difficult to implement. If this is an issue for your scene, consider (1) slowing objects down, (2) detecting collisions manually (collisions with the floor are easy – position.y - height / 2 <= 0), or (3) attempting a PR to CANNON.js. See: Collision with fast bodies.

Configuration

Contact materials define what happens when two objects meet, including physical properties such as friction and restitution (bounciness). The default, scene-wide contact materials may be configured on the scene element:

<a-scene physics="friction: 0.1; restitution: 0.5">
  <!-- ... -->
</a-scene>
PropertyDefaultDescription
debugtrueWhether to show wireframes for debugging.
gravity-9.8Force of gravity (in m/s^2).
iterations10The number of solver iterations determines quality of the constraints in the world. The more iterations, the more correct simulation. More iterations need more computations though. If you have a large gravity force in your world, you will need more iterations.
maxInterval0.0667Maximum simulated time (in milliseconds) that may be taken by the physics engine per frame. Effectively prevents weird "jumps" when the player returns to the scene after a few minutes, at the expense of pausing physics during this time.
friction0.01Coefficient of friction.
restitution0.3Coefficient of restitution (bounciness).
contactEquationStiffness1e8Stiffness of the produced contact equations.
contactEquationRelaxation3Relaxation time of the produced contact equations.
frictionEquationStiffness1e8Stiffness of the produced friction equations.
frictionEquationRegularization3Relaxation time of the produced friction equations

More advanced configuration, including specifying different collision behaviors for different objects, is available through the CANNON.js JavaScript API.

Resources:

Keywords

FAQs

Package last updated on 12 Oct 2016

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc