Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

astoptech

Package Overview
Dependencies
Maintainers
1
Versions
7
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

astoptech

abstract syntax tree optimization techniques

  • 1.0.4
  • Source
  • npm
  • Socket score

Version published
Maintainers
1
Created
Source

astoptech

ast optimization techniques

How can you optimize an abstract syntax tree?

Abstract syntax tree is a tree-like structure that represents your program. The program is interpreted at some point, e.g. in your browser. Everything takes time, and the same applies to the interpretation. Some of the operations, e.g. adding numbers can be done at compile time, so that the interpreter has less work to do. Having less work to do means that your program will run faster.

What optimization techniques are available?

binaryExpressionReduction

const number = 2 + 2

In the example above we have added two numbers. We could optimize the code by:

const number = 4

The tree would be translated from:

{
  "type": "BinaryExpression",
  "left": { "type": "Literal", "value": 2 },
  "right": { "type": "Literal", "value": 2 }
}

to

{ "type": "Literal", "value": 4 }

Usage:

const { binaryExpressionReduction } = require('astoptech')

ifStatementRemoval

if (true) {
  console.log('foo')
} else {
  console.log('bar')
}

It seems that we'll only enter the true path. We can simplify the code to:

console.log('foo')

The tree would be translated from:

{
      "type": "IfStatement",
      "test": {
        "type": "Literal",
        "value": true
      },
      "consequent": {
        "type": "BlockStatement",
        "body": [
          {
            "type": "ExpressionStatement",
            "expression": {
              "type": "CallExpression",
              "callee": {
                "type": "MemberExpression",
                "object": {
                  "type": "Identifier",
                  "name": "console"
                },
                "property": {
                  "type": "Identifier",
                  "name": "log"
                },
                "computed": false
              },
              "arguments": [
                {
                  "type": "Literal",
                  "value": "foo"
                }
              ]
            }
          }
        ]
      },
      "alternate": {
        "type": "BlockStatement",
        "body": [
          {
            "type": "ExpressionStatement",
            "expression": {
              "type": "CallExpression",
              "callee": {
                "type": "MemberExpression",
                "object": {
                  "type": "Identifier",
                  "name": "console"
                },
                "property": {
                  "type": "Identifier",
                  "name": "log"
                },
                "computed": false
              },
              "arguments": [
                {
                  "type": "Literal",
                  "value": "bar"
                }
              ]
            }
          }
        ]
      }
    }

to:

{
        "type": "CallExpression",
        "callee": {
          "type": "MemberExpression",
          "object": {
            "type": "Identifier",
            "name": "console"
          },
          "property": {
            "type": "Identifier",
            "name": "log"
          },
          "computed": false
        },
        "arguments": [
          {
            "type": "Literal",
            "value": "foo"
          }
        ]
      }

Usage:

const { ifStatementRemoval } = require('astoptech')

negationOperatorRemoval

if (!(foo === bar)) {
  console.log('foo')
}

It seems that our negation operator could be a part of the condition inside the brackets.

if (foo !== bar)  {
  console.log('foo')
}

The tree would be translated from:

{
  "type": "UnaryExpression",
  "operator": "!",
  "prefix": true,
  "argument": {
    "type": "BinaryExpression",
    "left": {
      "type": "Identifier",
      "name": "foo"
    },
    "operator": "===",
    "right": {
      "type": "Identifier",
      "name": "bar"
    }
  }
}

to

{
  "type": "BinaryExpression",
  "left": {
    "type": "Identifier",
    "name": "foo"
  },
  "operator": "!==",
  "right": {
    "type": "Identifier",
    "name": "bar"
  }
}

logicalExpressionReduction

const foo = "bar" || "baz"

The first value is truthy so it's safe to simplify the code.

const foo = "bar"

The tree would be translated from:

{
  "type": "LogicalExpression",
  "left": {
    "type": "Literal",
    "value": "bar"
  },
  "operator": "||",
  "right": {
    "type": "Literal",
    "value": "baz"
  }
}

To:

{
  "type": "Literal",
  "value": "bar"
}

ternaryOperatorReduction

const foo = true ? "bar": "baz"

Given a known value of the conditional expression it's possible to get the right value immediately.

const foo = "bar"

The tree would be translated from:

{
  "type": "ConditionalExpression",
  "test": {
    "type": "Literal",
    "value": true
  },
  "consequent": {
    "type": "Literal",
    "value": "bar"
  },
  "alternate": {
    "type": "Literal",
    "value": "baz"
  }
}

To:

{
  "type": "Literal",
  "value": "bar"
}

typeofOperatorReduction

const foo = typeof "bar"

It's possible to determine the type of some variables during analysis.

const foo = "string"

The tree would be translated from:

{
  "type": "UnaryExpression",
  "operator": "typeof",
  "prefix": true,
  "argument": {
    "type": "Literal",
    "value": "foo"
  }
}

To:

{
  "type": "Literal",
  "value": "string"
}

Keywords

FAQs

Package last updated on 03 Jan 2019

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc