
Security News
Deno 2.2 Improves Dependency Management and Expands Node.js Compatibility
Deno 2.2 enhances Node.js compatibility, improves dependency management, adds OpenTelemetry support, and expands linting and task automation for developers.
autocapture
Advanced tools
This project contains Datachecker's AutoCapture tool, that captures images of identity documents (ID/Passport/Driver license). The tool only takes a capture once a document is detected and it passes the quality control.
This project contains Datachecker's AutoCapture tool, that captures images of identity documents (ID/Passport/Driver license). The tool only takes a capture once a document is detected and it passes the quality control.
The tool will be run in the browser and is therefore written in JavaScript.
The tool performs the following checks:
Please visit Datachecker API documentation.
Datachecker uses OAuth authorization. In order to request the SDK token you will need to provide a valid OAuth token in the header.
Example header:
header = {'Authorization': `Bearer ${response.accessToken}`}
This OAuth token can be retrieved with the Datachecker OAuth Token API. The scope "productapi.sdk.read"
needs to be present to make use of the SDK token. If this scope is missing you will not be able to retrieve an SDK token.
Example OAuth:
fetch(<BASE_ENDPOINT>+"/oauth/token", {
method: 'POST',
body: JSON.stringify({
"clientId": <CLIENTID>,
"clientSecret": <CLIENTSECRET>,
"scopes": [
"productapi.sdk.read",
]
})
})
.then(response => response.json())
Note: Contact Datachecker for client_id and client_secret.
The SDK is locked. In order to use the SDK in production a token is required. The application can only be started with a valid token. This token is a base64
string. The token can be generated by calling the Datachecker SDK Token API.
Example:
fetch(<BASE_ENDPOINT>+"/sdk/token?customer_reference=<CUSTOMER>&services=AUTO_CAPTURE", {
method: 'GET',
headers: {
'Accept': 'application/json',
'Content-Type': 'application/json',
'Authorization': `Bearer <ACCESSTOKEN>`
}
})
.then(response => response.json())
To run this tool, you will need initialise with the following variables.
ATTRIBUTE | FORMAT | DEFAULT VALUE | EXAMPLE | NOTES |
---|---|---|---|---|
APPROVAL | bool | false | false | optional Approval screen after capture as an extra quality check. |
CONTAINER_ID | string | "AC_mount" | required div id to mount tool on. | |
CROP_CARD | bool | false | false | optional Enable cropping of card as output. |
CROP_FACE | bool | true | true | optional Enable cropping of face as output. |
DEBUG | bool | false | false | optional When debug is true more detailed logs will be visible. |
GLARE_LIVE_CHECK | bool | true | true | optional Enable glare detection. |
LANGUAGE | string | "nl" | "nl" | required Notifications in specific language. |
MODELS_PATH | string | "models/" | "models/" | optional Path referring to models location. |
MRZ_SETTINGS | object | see MRZ_SETTINGS | see MRZ_SETTINGS | optional Settings of MRZ scanning. |
MRZ | bool | false | false | optional Enable MRZ scanning. |
ROI_MODE | string | "landscape-landscape" | portrait-landscape | optional Frame orientation options: "portrait-landscape" , "landscape-landscape" |
ROOT | string | "" | "../" | optional Root location. |
TOKEN | string | see SDK Token | required Datachecker SDK token. | |
onComplete | javascript function | function(data) {console.log(data)} | required Callback function on complete. | |
onError | javascript function | function(error) {console.log(error)} | function(error) {console.log(error)} | required Callback function on error. |
onImage | javascript function | function(data) {console.log(data)} | function(data) {console.log(data)} | optional Callback function on image. |
onUserExit | javascript function | function(error) {console.log(error)} | function(error) {window.history.back()} | required Callback function on user exit. |
Within the application, you can take advantage of four callback functions to enhance the user experience and manage the flow of your process.
Note: When integrating the application into Native Apps using web views, it's essential to adapt and utilize these callback functions according to the conventions and requirements of the native platforms (e.g., iOS, Android). Native app development environments may have specific ways of handling JavaScript callbacks, and you should ensure seamless communication between the web view and the native code.
Example Web (JS):
let AC = new AutoCapture();
AC.init({
CONTAINER_ID: 'AC_mount',
LANGUAGE: 'en',
TOKEN: "<SDK_TOKEN>",
onComplete: function(data) {
console.log(data);
},
onImage: function(data) {
console.log(data);
},
onError: function(error) {
console.log(error)
},
onUserExit: function(error) {
console.log(error);
window.history.back();
}
});
ATTRIBUTE | FORMAT | DEFAULT VALUE | EXAMPLE | NOTES |
---|---|---|---|---|
onComplete | javascript function | function(data) {console.log(data)} | required Callback that fires when all interactive tasks in the workflow have been completed. | |
onError | javascript function | function(error) {console.log(error)} | function(error) {console.log(error)} | required Callback that fires when an error occurs. |
onImage | javascript function | function(data) {console.log(data)} | function(data) {console.log(data)} | optional Callback that fires when frame succesfully passes quality controls. This callback can be used when you want to process or analyze live frames. (See External-MRZ) |
onUserExit | javascript function | function(error) {console.log(error)} | function(error) {window.history.back()} | required Callback that fires when the user exits the flow without completing it. |
This callback function will be called once all the tasks within the workflow succesfully have been completed. This callback function is required. The data
parameter within the function represents the output of the completed process. You can customize this function to handle and display the data as needed.
Example Web (JS):
Within the example below we are logging the output (data
) to console.
let AC = new AutoCapture();
AC.init({
...,
onComplete: function(data) {
console.log(data);
}
});
This callback function will be called when a frame succesfully passes quality controls. This callback can be used when you want to process or analyze live frames (See External-MRZ). This callback function is optional. The data
parameter within the function represents the frame that succesfully passed the quality controls. It's format is a base64
image string where the Data URI ("data:image/png;base64,"
) has been taken off.
Example Web (JS):
Within the example below we are logging the output (data
) to console.
let AC = new AutoCapture();
AC.init({
...,
onImage: function(data) {
// data = "iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADg....."
console.log(data)
}
});
This callback can be used to alert users when something goes wrong during the process. This callback function is required. The error
parameter within the function contains information about the specific error encountered, allowing you to log or display error messages for debugging or user guidance. The errors that are thrown are either known or unknown. The known errors can be found within the Languages dictionary. On the other hand, the unknown errors will be thrown as is.
Example Web (JS):
Within the example below we are logging the output (error
) to console.
let AC = new AutoCapture();
AC.init({
...,
onError: function(error) {
console.log(error)
}
});
This callback can be used to implement actions like returning users to the previous page or prompting them for confirmation before exiting to ensure they don't lose any unsaved data or work. This callback function is required. The error
parameter within the function contains information about the specific error encountered, allowing you to log or display error messages for debugging or user guidance. The error that is thrown is "exit"
.
Example Web (JS):
Within the example below we are logging the output (error
) to console. Finally, we move back one page in the session history with window.history.back()
.
let AC = new AutoCapture();
AC.init({
...,
onUserExit: function(error) {
console.log(error);
window.history.back()
}
});
The tool first needs to be initialised to load all the models. Once its initialised, it will be started.
let AC = new AutoCapture();
AC.init({
CONTAINER_ID: ...,
LANGUAGE: ...,
TOKEN: ...,
onComplete: ...,
onError: ...,
onUserExit: ...
});
To stop the camera and delete the container with its contents the stop
function can be called. This function will automatically be called within onComplete
, onError
and onUserExit
thus do not have to be called within your own custom versions of these functions.
...
AC.stop();
Example below:
let AC = new AutoCapture();
AC.init({
CONTAINER_ID: 'AC_mount',
LANGUAGE: 'nl',
TOKEN: "<SDK_TOKEN>",
onComplete: function(data) {
console.log(data);
},
onError: function(error) {
console.log(error)
},
onUserExit: function(error) {
console.log(error);
window.history.back()
}
});
CSS stylesheet.
<link href="css/autocapture.css" rel="stylesheet" type="text/css" />
The meta tags below are required to view the tool properly.
<meta name="viewport" content="user-scalable=no, width=device-width, viewport-fit=cover, initial-scale=1, minimum-scale=1" />
<meta name="apple-mobile-web-app-capable" content="yes" />
Load script.
<script src="js/autocapture.obf.js" type="text/javascript"></script>
File present under html/examples/index.html
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>AutoCapture</title>
<link href="../css/autocapture.css" rel="stylesheet" type="text/css" />
<meta name="viewport" content="user-scalable=no, width=device-width, initial-scale=1, minimum-scale=1" />
<meta name="apple-mobile-web-app-capable" content="yes" />
</head>
<body>
<div id="AC_mount"></div>
</body>
<script src="../js/autocapture.obf.js" type="text/javascript"></script>
<script>
let AC = new Autocapture();
AC.init({
CONTAINER_ID: 'AC_mount',
LANGUAGE: 'nl',
ROOT: "../",
TOKEN: "<SDK_TOKEN>",
onComplete: function (data) {
console.log(data)
},
onError: function(error) {
console.log(error)
},
onUserExit: function(error) {
console.log(error);
window.history.back()
}
});
</script>
</html>
There are two ways in which notifications can be loaded: from file, from object (json).
The languages can be found in js/language/
. The current support languages are en
and nl
. More languages could be created.
The notifications can be loaded in configuration
like the following:
let AC = new AutoCapture();
AC.init({
LANGUAGE: 'en',
...
To create support for a new language, a js file needs to be created with specific keys.
The keys can be derived from the current language js files (js/language/en.js
).
Example:
var LANGUAGE = {
"start_prompt": "Tap to start",
"flip": "Flip the document",
"flip_frontside": "Flip the document to the frontside",
"flip_backside": "Flip the document to the backside",
"std_msg_0": "Place your document in the frame",
"exp_dark": "Environment is too dark",
"exp_bright": "Environment is too bright",
"blur": "Hold still...",
"glare": "Glare detected",
"size": "Move closer",
"focus": "Focus on document.",
"approval_prompt": "Is the image right?",
"retry": "Try again",
"confirm": "Accept",
"capture_error": "We were unable to capture an image. Camera access is required.",
"mrz_search": "Searching MRZ...",
"continue": "Continue",
"rotate_phone": "Please rotate your phone upright",
}
Notifications can also be loaded as a json object like the following:
let AC = new AutoCapture();
AC.init({
LANGUAGE: JSON.stringify(
{
"start_prompt": "Tap to start",
"flip": "Flip the document",
"flip_frontside": "Flip the document to the frontside",
"flip_backside": "Flip the document to the backside",
"std_msg_0": "Place your document in the frame",
"exp_dark": "Environment is too dark",
"exp_bright": "Environment is too bright",
"blur": "Hold still...",
"glare": "Glare detected",
"size": "Move closer",
"focus": "Focus on document.",
"approval_prompt": "Is the image right?",
"retry": "Try again",
"confirm": "Accept",
"capture_error": "We were unable to capture an image. Camera access is required.",
"mrz_search": "Searching MRZ...",
"continue": "Continue",
"rotate_phone": "Please rotate your phone upright",
}
),
...
The tool uses a collection of neural networks. Make sure that you host the full directory so the models can be accessed. The models path can be configured. (see Configuration)
The models are located under models/
.
There is a face detector within the SDK. This detector will try to find the portrait picture on the document. If it is found, this face will be present in the output. Else, the output will not have any mention of face
. When more faces are found only one face is being returned. The face with the highest score will be returned.
Example:
{
"image": ["...base64_img"],
"face": {
"score": 0.9,
"data": "...base64_img"
},
}
The application offers Machine Readable Zone (MRZ) scanning functionality, which allows it to extract information from documents containing MRZ data. This is achieved through Optical Character Recognition (OCR) techniques. The application includes an internal OCR engine specifically designed for MRZ scanning. Additionally, users have the option to integrate an external OCR engine (see External MRZ) for MRZ scanning if the internal OCR engine consumes excessive RAM.
The MRZ scanning tool supports various types of documents, including:
The MRZ scanning process involves the following steps:
Quality Checks: MRZ scanning initiates only after passing all necessary quality checks to ensure the document's readability.
Crop and Perspective Correction: The tool identifies the location of the MRZ on the document and performs cropping and perspective correction to isolate the MRZ area. This cropped section is then used as an image for the scanning process.
Retries: If the initial scan does not yield the desired results, the tool offers the option to retry scanning. In that case, the tool will try to use the next frame. Only frames that pass all the quality checks will be used. The number of retries can be configured using the following setting: (see Configuration).
MRZ_RETRIES: 5
To enable infinite retries, use:
MRZ_RETRIES: -1
To enable MRZ scanning use MRZ: true
(see Configuration).
ATTRIBUTE | FORMAT | DEFAULT VALUE | EXAMPLE | NOTES |
---|---|---|---|---|
FLIP_EXCEPTION | Array<String> | [] | ["P"] | optional If FLIP is true skip these misc values. Examples of possible misc values are: ["P", "I", "D"] . |
FLIP_INCLUDE | Array<Object> | [{ "misc": "all", "country": "all", "nationality": "all"}] | [{ "misc": "P", "country": "NLD", "nationality": "NLD", }] | optional If FLIP is true only flip if these values are included in the mrz output. |
FLIP | bool | true | true | optional Prompt user to flip card. |
MIN_VALID_SCORE | int | 50 | 50 | optional Minimum valid score of MRZ. The valid score is a range between 0-100 indicating how valid the found MRZ is. |
MRZ_RETRIES | int | 5 | 5 | optional Amount of retries for MRZ scanning before continuing. Use -1 for infinite retries. |
OCR | bool | true | true | optional Wether to use the internal OCR for MRZ reading. An external OCR can also be used see MRZ. |
Example:
let AC = new Autocapture();
AC.init({
CONTAINER_ID: 'AC_mount',
MRZ: true,
MRZ_SETTINGS: {
MRZ_RETRIES: -1,
FLIP: true,
FLIP_EXCEPTION: [],
FLIP_INCLUDE: [
{
"misc": "I",
"country": "all",
"nationality": "all",
},
{
"misc": "D",
"country": "all",
"nationality": "all",
},
{
"misc": "P",
"country": "NLD",
"nationality": "NLD",
},
],
MIN_VALID_SCORE: 90,
OCR: true
},
TOKEN: "<SDK_TOKEN>",
onComplete: function (data) {
console.log(data)
},
onError: function(error) {
console.log(error)
},
onUserExit: function (error) {
console.log(error)
window.history.back()
}
})
Example output:
{
"angle": "...",
"type": "PASSPORT",
"subtype": "<",
"country": "NLD",
"lname": "DE",
"lname2": "BRUIJN",
"spacing": "",
"fname": "WILLEKE",
"mname1": "LISELOTTE",
"name_complement": "",
"number": "SPECI2014",
"check_digit_document_number": "2",
"nationality": "NLD",
"date_of_birth": "1965-03-10",
"check_digit_date_of_birth": "1",
"sex": "F",
"expiration_date": "2024-03-09",
"check_digit_expiration_date": "6",
"complement": "999999990<<<<<84",
"mrz_type": "td3",
"raw_mrz": [
"P<NLDDE<BRUIJN<<WILLEKE<LISELOTTE<<<<<<<<<<<",
"SPECI20142NLD6503101F2403096999999990<<<<<84"
],
"check_digit_composite": "4",
"personal_number": "999999990",
"check_digit_personal_number": "8",
"valid_number": true,
"valid_date_of_birth": true,
"valid_expiration_date": true,
"valid_personal_number": true,
"valid_composite": true,
"valid_misc": true,
"valid_score": 100,
"misc": "P",
"names": "WILLEKE LISELOTTE",
"surname": "DE BRUIJN"
}
It is possible to retrieve the MRZ externally and then send it to the SDK using the following approach:
Using the onImage Callback
Utilize the onImage
callback to trigger an external process with the current frames.
If this external process successfully retrieves the MRZ information, it can then be sent to the SDK using the parse_mrz
function.
The parse_mrz
function expects the MRZ lines as an argument, provided as a single string with line breaks ("\n"
) separating the lines.
Here's an example of how this can be implemented in JavaScript:
// Initialize the Autocapture SDK
let AC = new Autocapture();
AC.init({
// ... other configurations
onImage: function (data) {
// External OCR process retrieves MRZ information
let MRZ_text = EXTERNAL_OCR_FUNCTION(data); // Example MRZ text: "P<NLDDE<BRUIJN<<WILLEKE<LISELOTTE<<<<<<<<<<<\nSPECI20142NLD6503101F2403096999999990<<<<<84"
// Send the retrieved MRZ information to the SDK for parsing
AC.parse_mrz(MRZ_text);
},
});
The SDK will output in the following structure:
{
"image": ["...base64_img"],
"face": {
"score": "...",
"data": "...base64_img"
},
"force_capture": ["bool"],
"meta": [
{
"angle": "...",
"coordinates": [
["...", "..."],
["...", "..."],
["...", "..."],
["...", "..."]
]
}
],
"token": "sdk_token"
}
With MRZ:
{
"image": ["...base64_img"],
"face": {
"score": "...",
"data": "...base64_img"
},
"force_capture": [false, false],
"meta": [
{
"angle": "...",
"coordinates": [
["...", "..."],
["...", "..."],
["...", "..."],
["...", "..."]
]
}
],
"mrz": {
"angle": "...",
"type": "...",
"subtype": "...",
"country": "...",
"lname": "...",
"lname2": "...",
"spacing": "...",
"fname": "...",
"mname1": "...",
"name_complement": "...",
"number": "...",
"check_digit_document_number": "...",
"nationality": "...",
"date_of_birth": "...",
"check_digit_date_of_birth": "...",
"sex": "...",
"expiration_date": "...",
"check_digit_expiration_date": "...",
"complement": "...",
"mrz_type": "...",
"raw_mrz": [
"...",
"..."
],
"check_digit_composite": "...",
"personal_number": "...",
"check_digit_personal_number": "...",
"valid_number": true,
"valid_date_of_birth": true,
"valid_expiration_date": true,
"valid_personal_number": true,
"valid_composite": true,
"valid_misc": true,
"valid_score": true,
"misc": "...",
"names": "...",
"surname": "..."
},
"token": "sdk_token"
}
Example:
{
"image": ["iVBORw0KGgoAAAANSUhEUgAAAysAAAS..."],
"face": {
"score": 0.9,
"data": "iVBORw0KGgoAAAANSUhEUgAAAysAAAS..."
},
"force_capture": [
false,
true
],
"meta": [
{
"angle": 0,
"coordinates": [
[0, 0],
[0, 100],
[150, 100],
[150, 0]
]
}
],
"mrz": {
"angle": "...",
"type": "PASSPORT",
"subtype": "<",
"country": "NLD",
"lname": "DE",
"lname2": "BRUIJN",
"spacing": "",
"fname": "WILLEKE",
"mname1": "LISELOTTE",
"name_complement": "",
"number": "SPECI2014",
"check_digit_document_number": "2",
"nationality": "NLD",
"date_of_birth": "1965-03-10",
"check_digit_date_of_birth": "1",
"sex": "F",
"expiration_date": "2024-03-09",
"check_digit_expiration_date": "6",
"complement": "999999990<<<<<84",
"mrz_type": "td3",
"raw_mrz": [
"P<NLDDE<BRUIJN<<WILLEKE<LISELOTTE<<<<<<<<<<<",
"SPECI20142NLD6503101F2403096999999990<<<<<84"
],
"check_digit_composite": "4",
"personal_number": "999999990",
"check_digit_personal_number": "8",
"valid_number": true,
"valid_date_of_birth": true,
"valid_expiration_date": true,
"valid_personal_number": true,
"valid_composite": true,
"valid_misc": true,
"valid_score": 100,
"misc": "P",
"names": "WILLEKE LISELOTTE",
"surname": "DE BRUIJN"
},
"token": "sdk_token"
}
FAQs
This project contains Datachecker's AutoCapture tool, that captures images of identity documents (ID/Passport/Driver license). The tool only takes a capture once a document is detected and it passes the quality control.
We found that autocapture demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Deno 2.2 enhances Node.js compatibility, improves dependency management, adds OpenTelemetry support, and expands linting and task automation for developers.
Security News
React's CRA deprecation announcement sparked community criticism over framework recommendations, leading to quick updates acknowledging build tools like Vite as valid alternatives.
Security News
Ransomware payment rates hit an all-time low in 2024 as law enforcement crackdowns, stronger defenses, and shifting policies make attacks riskier and less profitable.