Security News
Node.js EOL Versions CVE Dubbed the "Worst CVE of the Year" by Security Experts
Critics call the Node.js EOL CVE a misuse of the system, sparking debate over CVE standards and the growing noise in vulnerability databases.
Baobab is a JavaScript persistent and immutable (at least by default) data tree supporting cursors and enabling developers to easily navigate and monitor nested data through events.
It is mainly inspired by functional zippers (such as Clojure's ones) and by Om's cursors.
It aims at providing a centralized model holding an application's state and can be paired with React easily through mixins, higher order components, wrapper components or decorators (available there).
For a concise introduction about the library and how it can be used in a React/Flux application, you can head toward @christianalfoni's article on the subject.
Fun fact: A Baobab, or Adansonia digitata, is a very big and magnificient African tree.
var Baobab = require('baobab');
var tree = new Baobab({
palette: {
colors: ['yellow', 'purple'],
name: 'Glorious colors'
}
});
var colorsCursor = tree.select('palette', 'colors');
colorsCursor.on('update', function(e) {
var eventData = e.data;
console.log('Selected colors have updated:', eventData.data);
});
colorsCursor.push('orange');
If you want to use Baobab with node.js/io.js or browserify/webpack etc., you can use npm.
npm install baobab
# Or if you need the latest dev version
npm install git+https://github.com/Yomguithereal/baobab.git
If you want to use it in the browser, just include the minified script located here.
<script src="baobab.min.js"></script>
Or install with bower:
bower install baobab
The library (as a standalone) currently weights ~25ko minified and ~7ko gzipped.
Creating a tree is as simple as instantiating Baobab with an initial data set.
var Baobab = require('baobab');
var tree = new Baobab({hello: 'world'});
// Retrieving data from your tree
tree.get();
>>> {hello: 'world'}
Then you can create cursors to easily access nested data in your tree and listen to changes concerning the part of the tree you selected.
// Considering the following tree
var tree = new Baobab({
palette: {
name: 'fancy',
colors: ['blue', 'yellow', 'green']
}
});
// Creating a cursor on the palette
var paletteCursor = tree.select('palette');
paletteCursor.get();
>>> {name: 'fancy', colors: ['blue', 'yellow', 'green']}
// Creating a cursor on the palette's colors
var colorsCursor = tree.select('palette', 'colors');
colorsCursor.get();
>>> ['blue', 'yellow', 'green']
// Creating a cursor on the palette's third color
var thirdColorCursor = tree.select('palette', 'colors', 2);
thirdColorCursor.get();
>>> 'green'
// Note that you can also perform subselections if needed
var colorCursor = paletteCursor.select('colors');
A baobab tree can obviously be updated. However, one has to understand that, even if you can write the tree synchronously, update
events won't be, at least by default, fired until next frame.
If you really need to fire an update synchronously (typically if you store a form's state within your app's state, for instance), your remain free to use the tree.commit()
method or tweak the tree's options to fit your needs.
Important: Note that the tree, being a persistent data structure, will shift the references of the objects it stores in order to enable immutabley comparisons between one version of the state and another (this is especially useful when using strategies as such as React's pure rendering).
Example
var tree = new Baobab({hello: 'world'});
var initialState = tree.get();
tree.set('hello', 'monde');
// After asynchronous update...
assert(initialState !== tree.get());
Since Baobab is immutable by default, note that all the methods below will return the data of the updated node for convenience and so you don't have to use .get
afterwards to continue what you were doing.
Replacing data at cursor
var newData = cursor.set({hello: 'world'});
Setting a key
var newData = cursor.set('hello', 'world');
// Nested path
var newData = cursor.set(['one', 'two'], 'world');
// Same as
var newData = cursor.select('one', 'two').set('world');
// Or
var newData = cursor.select('one').set('two', 'world');
Removing data at cursor
cursor.unset();
Unsetting a key
cursor.unset('hello');
// Nested path
cursor.unset(['one', 'two']);
Pushing values
Obviously this will fail if the value at cursor is not an array.
var newArray = cursor.push('purple');
// At key
var newArray = cursor.push('list', 'orange')
// Nested path
var newArray = cursor.push(['one', 'two'], 'orange');
Unshifting values
Obviously this will fail if the value at cursor is not an array.
var newArray = cursor.unshift('purple');
// At key
var newArray = cursor.unshift('list', 'orange')
// Nested path
var newArray = cursor.unshift(['one', 'two'], 'orange');
Concatenating
Obviously this will fail if the value at cursor is not an array.
var newArray = cursor.concat(['purple', 'yellow']);
// At key
var newArray = cursor.concat('list', ['purple', 'yellow'])
// Nested path
var newArray = cursor.concat(['one', 'two'], ['purple', 'yellow']);
Splicing an array
Obviously this will fail if the value at cursor is not an array.
var newArray = cursor.splice([1, 1]);
// Applying splice n times with different arguments
var newArray = cursor.splice([[1, 2], [3, 2, 'hello']]);
// At key
var newArray = cursor.splice('list', [1, 1])
// Nested path
var newArray = cursor.splice(['one', 'two'], [1, 1]);
Applying a function
var inc = function(currentData) {
return currentData + 1;
};
var newData = cursor.apply(inc);
// At key
var newData = cursor.apply('number', inc)
// Nested path
var newData = cursor.apply(['one', 'two'], inc);
Shallowly merging objects
Obviously this will fail if the value at cursor is not an object.
var newObject = cursor.merge({hello: 'world'});
// At key
var newObject = cursor.merge('object', {hello: 'world'})
// Nested path
var newObject = cursor.merge(['one', 'two'], {hello: 'world'});
Note that you can use any of the above methods on the tree itself for convenience:
Example
// Completely replacing the tree's data
tree.set({hello: 'world'});
// Setting value at key
tree.set('hello', 'world');
// Nested path
tree.set(['message', 'hello'], 'world');
// Every other methods also work
tree.set
tree.unset
tree.apply
tree.push
tree.unshift
tree.splice
tree.concat
tree.merge
Whenever an update is committed, events are fired to notify relevant parts of the tree that data was changed so that bound elements, UI components, for instance, may update.
Note however that only relevant cursors will be notified of a change.
Events can be bound to either the tree or cursors using the on
method.
Example
// Considering the following tree
var tree = new Baobab({
users: {
john: {
firstname: 'John',
lastname: 'Silver'
},
jack: {
firstname: 'Jack',
lastname: 'Gold'
}
}
});
// And the following cursors
var usersCursor = tree.select('users'),
johnCursor = usersCursor.select('john'),
jackCursor = usersCursor.select('jack');
// If we update both users
johnCursor.set('firstname', 'John the third');
jackCursor.set('firstname', 'Jack the second');
// Every cursor above will be notified of the update
// But if we update only john
johnCursor.set('firstname', 'John the third');
// Only the users and john cursors will be notified
update
Will fire if the tree is updated (this concerns the asynchronous updates of the tree).
tree.on('update', function(e) {
var eventData = e.data;
console.log('Current data:', eventData.currentData);
console.log('Previous data:', eventData.previousData);
console.log('Transaction details:', eventData.transaction);
console.log('Affected paths', eventData.paths);
});
write
Will fire whenever the tree is written (synchronously, unlike the update
event).
tree.on('write', function(e) {
console.log('Affected path:', e.data.path);
});
invalid
Will fire if the validate
function (see options) returned an error for the current update.
tree.on('invalid', function(e) {
console.log('Error:', e.data.error);
});
get
Will fire whenever data is accessed in the tree.
tree.on('get', function(e) {
console.log('Path:', e.data.path);
console.log('Solved path:', e.data.solvedPath);
console.log('Target data:', e.data.data);
});
select
Will fire whenever a path is selected in the tree.
tree.on('select', function(e) {
console.log('Path:', e.data.path);
console.log('Resultant cursor:', e.data.cursor);
});
update
Will fire if data watched over by the cursor has updated.
cursor.on('update', function(e) {
console.log('Current data:', eventData.currentData);
console.log('Previous data:', eventData.previousData);
});
For more information concerning Baobab's event emitting, see the emmett library.
If you ever need to, know that there are many ways to select and retrieve data within a baobab.
var tree = new Baobab({
palette: {
name: 'fancy',
colors: ['blue', 'yellow', 'green'],
currentColor: 1,
items: [{id: 'one', value: 'Hey'}, {id: 'two', value: 'Ho'}]
}
});
// Selecting
var colorsCursor = tree.select('palette', 'colors');
var colorsCursor = tree.select(['palette', 'colors']);
var colorsCursor = tree.select('palette').select('colors');
var paletteCursor = tree.select('palette');
// Retrieving data
colorsCursor.get(1);
>>> 'yellow'
paletteCursor.get('colors', 2);
>>> 'green'
tree.get('palette', 'colors');
tree.get(['palette', 'colors']);
>>> ['blue', 'yellow', 'green']
// Retrieving or selecting data by passing a function in the path
var complexCursor = tree.select('palette', 'colors', function(color) {
return color === 'green';
});
tree.get('palette', 'colors', function(color) {
return color === 'green';
});
>>> 'green'
// Retrieving or selecting data by passing a descriptor object in the path
var complexCursor = tree.select('items', {id: 'one'}, 'value');
tree.get('items', {id: 'one'}, 'value');
>>> 'Hey'
// Creating a blank tree
var blankTree = new Baobab();
Note: when using a function or a descriptor object in a path, you are not filtering but rather selecting the first matching element. (It's actually the same as using something like lodash's _.find
).
For convenience, Baobab allows you to store computed data within the tree.
Computed data node can be considered as a "view" or "facet" over some parts of the data stored within your tree (a filtered version of an array, for instance).
Those specific nodes must have, by convention, a key starting with $
and can define dependencies to some paths within the tree.
Example
var tree = new Baobab({
user: {
name: 'John',
surname: 'Smith',
$fullname: {
cursors: {
name: ['user', 'name'],
surname: ['user', 'surname']
},
get: function(data) {
return data.name + ' ' + data.surname;
}
}
},
data: {
messages: [
{from: 'John', txt: 'Hey'},
{from: 'Jack', txt: 'Ho'}
],
$fromJohn: {
cursors: {
messages: ['data', 'messages'],
},
get: function(data) {
return data.messages.filter(function(m) {
return m.from === 'John';
});
}
}
}
});
// Alternate shorthand definition syntax
var tree = new Baobab({
user: {
name: 'John',
surname: 'Smith',
$fullname: [
['user', 'name'],
['user', 'surname'],
function(name, surname) {
return name + ' ' + surname;
}
]
},
data: {
messages: [
{from: 'John', txt: 'Hey'},
{from: 'Jack', txt: 'Ho'}
],
$fromJohn: [
['data', 'messages'],
function(messages) {
return messages.filter(function(m) {
return m.from === 'John';
});
}
]
}
});
// You can then access or select data naturally
tree.get('user', '$fullname');
>>> 'John Smith'
tree.get('data', '$fromJohn');
>>> [{from: 'John', txt: 'Hey'}]
tree.get('data', '$fromJohn', 'txt');
>>> 'Hey'
// Just note that computed data node is read-only and that the tree
// will throw if you try to update a path lying beyond a computed node
tree.set(['data', '$fromJohn', 'txt'], 'Yay');
>>> Error!
The computed data node will of course automatically update whenever at least one of the watched paths is updated.
It is not possible, at the time being, to modify facets' definition at runtime. It may however be allowed in further versions.
tree/cursor.exists
Check whether a specific path exists within the tree (won't fire a get
event).
// Probably true
tree.exists();
// Does the cursor points at an existing path?
cursor.exists();
// Can also take a path
tree.exists('hello');
tree.exists('hello', 'message');
tree.exists(['hello', 'message']);
tree/cursor.serialize
Retrieve only raw data (therefore avoiding computed data) from the tree or a cursor.
This is useful when you want to serialize your tree into JSON, for instance.
tree.serialize();
cursor.serialize();
// Can also take a path
tree.serialize('hello');
tree.serialize('hello', 'message');
tree.serialize(['hello', 'message']);
tree.watch
Create a watcher that will fire an update
event if any of the given paths is affected by a transaction.
This is useful to create modules binding a state tree to UI components.
// Considering the following tree
var tree = new Baobab({
one: {
name: 'John'
},
two: {
surname: 'Smith'
}
});
var watcher = tree.watch({
name: ['one', 'name'],
surname: ['two', 'surname']
});
watcher.on('update', function(e) {
// One of the watched paths was updated!
});
tree/cursor.project
Retrieve data from several parts of the tree by following the given projection:
// Considering the following tree
var tree = new Baobab({
one: {
name: 'John'
},
two: {
surname: 'Smith'
}
});
// Using an object projection
tree.project({
name: ['one', 'name'],
surname: ['two', 'surname']
});
>>> {name: 'John', surname: 'Smith'}
// Using an array projection
tree.project([
['one', 'name'],
['two', 'surname']
]);
>>> ['John', 'Smith']
Getting root cursor
var tree = new Baobab({first: {second: 'yeah'}}),
cursor = tree.select('first');
var rootCursor = tree.root;
// or
var rootCursor = cursor.root();
Going up in the tree
var tree = new Baobab({first: {second: 'yeah'}})
secondCursor = tree.select('first', 'second');
var firstCursor = secondCursor.up();
Going left/right/down in lists
var tree = new Baobab({
list: [[1, 2], [3, 4]],
longList: ['one', 'two', 'three', 'four']
});
var listCursor = tree.select('list'),
twoCursor = tree.select('longList', 1);
listCursor.down().right().get();
>>> [3, 4]
listCursor.select(1).down().right().get();
>>> 4
listCursor.select(1).down().right().left().get();
>>> 3
twoCursor.leftmost().get();
>>> 'one'
twoCursor.rightmost().get();
>>> 'four'
Getting information about the cursor's location in the tree
cursor.isRoot();
cursor.isBranch();
cursor.isLeaf();
You can pass those options at instantiation.
var baobab = new Baobab(
// Initial data
{
palette: {
name: 'fancy',
colors: ['blue', 'green']
}
},
// Options
{
autoCommit: false
}
)
true
]: should the tree auto commit updates or should it let the user do so through the commit
method?true
]: should the tree delay the update to the next frame or fire them synchronously?true
]: should the tree's data be immutable? Note that immutability is performed through Object.freeze
and should be disabled in production for performance reasons.true
]: should the tree be persistent. Know that disabling this option, while bringing a significant performance boost on heavy data, will make you lose the benefits of your tree's history and O(1)
comparisons of objects.rollback
]: validation behavior of the tree. If rollback
, the tree won't apply the current update and fire an invalid
event while notify
will only emit the event and let the tree enter the invalid state anyway.Validation function
function validationFunction(previousState, newState, affectedPaths) {
// Perform validation here and return an error if
// the tree is invalid
if (!valid)
return new Error('Invalid tree because of reasons.');
}
var tree = new Baobab({...}, {validate: validationFunction});
Baobab lets you record the successive states of any cursor so you can seamlessly implement undo/redo features.
Example
// Synchronous tree so that examples are simpler
var baobab = new Baobab({colors: ['blue']}, {asynchronous: false}),
cursor = baobab.select('colors');
// Starting to record state, with 10 records maximum
cursor.startRecording(10);
cursor.push('yellow');
cursor.push('purple');
cursor.push('orange');
cursor.get();
>>> ['blue', 'yellow', 'purple', 'orange']
cursor.undo();
cursor.get();
>>> ['blue', 'yellow', 'purple']
cursor.undo(2);
cursor.get();
>>> ['blue']
Starting recording
If you do not provide a maximum number of records, will record everything without any limit.
cursor.startRecording(maxNbOfRecords);
Stoping recording
cursor.stopRecording();
Undoing
cursor.undo();
cursor.undo(nbOfSteps);
Clearing history
cursor.clearHistory();
Checking if the cursor has an history
cursor.hasHistory();
Retrieving the cursor's history
cursor.getHistory();
Releasing
In most complex use cases, you might need to release the manipulated objects, i.e. kill their event emitters and wipe their associated data.
Thus, any tree or cursor object can be cleared from memory by using the release
method.
tree.release();
cursor.release();
Note also that releasing a tree will consequently and automatically release every of its cursors and computed data nodes.
User interfaces as pure functions
User interfacess should be, as far as possible, considered as pure functions. Baobab is just a way to provide the needed arguments, i.e. the data representing your app's state, to such a function.
Considering your UIs like pure functions comes along with collateral advantages like easy undo/redo features, state storing (just save your tree in the localStorage
and here you go) and easy usage in both client & server.
Only data should enter the tree
You shouldn't try to shove anything else than raw data into the tree. The tree hasn't been conceived to hold classes or fancy indexes with many circular references and cannot perform its magic on it. But, probably such magic is not desirable for those kind of abstractions anyway.
That is to say the data you insert into the tree should logically be JSON-serializable else you might be missing the point.
From v1 to v2
push
and unshift
method was dropped in favor of the concat
method.$cursor
sugar has now been dropped.From v0.4.x to v1
A lot of changes occurred between 0.4.x
and 1.0.0
. Most notable changes being the following ones:
cursor.edit
and cursor.remove
have been replaced by cursor.set
and cursor.unset
single argument polymorphisms.typology
so you can choose you own validation system and so the library can remain lighter.$splice
, facets and so on...For more information, see the changelog.
Contributions are obviously welcome. This project is nothing but experimental and I would cherish some feedback and advice about the library.
Be sure to add unit tests if relevant and pass them all before submitting your pull request.
# Installing the dev environment
git clone git@github.com:Yomguithereal/baobab.git
cd baobab
npm install
# Running the tests
npm test
# Linting, building
npm run lint
npm run build
MIT
FAQs
JavaScript persistent data tree with cursors.
The npm package baobab receives a total of 2,314 weekly downloads. As such, baobab popularity was classified as popular.
We found that baobab demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Critics call the Node.js EOL CVE a misuse of the system, sparking debate over CVE standards and the growing noise in vulnerability databases.
Security News
cURL and Go security teams are publicly rejecting CVSS as flawed for assessing vulnerabilities and are calling for more accurate, context-aware approaches.
Security News
Bun 1.2 enhances its JavaScript runtime with 90% Node.js compatibility, built-in S3 and Postgres support, HTML Imports, and faster, cloud-first performance.