![Oracle Drags Its Feet in the JavaScript Trademark Dispute](https://cdn.sanity.io/images/cgdhsj6q/production/919c3b22c24f93884c548d60cbb338e819ff2435-1024x1024.webp?w=400&fit=max&auto=format)
Security News
Oracle Drags Its Feet in the JavaScript Trademark Dispute
Oracle seeks to dismiss fraud claims in the JavaScript trademark dispute, delaying the case and avoiding questions about its right to the name.
Pure Javascript (Typescript) implementation of BLAS (Basic Linear Algebra Subprograms).
Files created to mimic intrinsic
fortran routines not existing in javascript.
fortran routine | ts-file | javascript function name |
---|---|---|
SIGN | _helper.ts | fsign |
fortran file | level | ts file | port date | test-suite-date | base functions |
---|---|---|---|---|---|
caxpy.f | level 1 | caxpy.ts | y = a*x + y | ||
ccopy.f | |||||
cdotc.f | |||||
cdotu.f | |||||
cgbmv.f | |||||
cgemm.f | |||||
cgemv.f | |||||
cgerc.f | |||||
cgeru.f | |||||
chbmv.f | |||||
chemm.f | |||||
chemv.f | |||||
cher.f | |||||
cher2.f | |||||
cher2k.f | |||||
cherk.f | |||||
chpmv.f | |||||
chpr.f | |||||
chpr2.f | |||||
crotg.f | |||||
cscal.f | |||||
csrot.f | |||||
csscal.f | |||||
cswap.f | |||||
csymm.f | |||||
csyr2k.f | |||||
csyrk.f | |||||
ctbmv.f | |||||
ctbsv.f | |||||
ctpmv.f | |||||
ctpsv.f | |||||
ctrmm.f | |||||
ctrmv.f | |||||
ctrsm.f | |||||
ctrsv.f | |||||
dasum.f | |||||
daxpy.f | |||||
dcabs1.f | |||||
dcopy.f | |||||
ddot.f | |||||
dgbmv.f | |||||
dgemm.f | |||||
dgemv.f | |||||
dger.f | |||||
dnrm2.f | |||||
drot.f | |||||
drotg.f | |||||
drotm.f | |||||
drotmg.f | |||||
dsbmv.f | |||||
dscal.f | |||||
dsdot.f | |||||
dspmv.f | |||||
dspr.f | |||||
dspr2.f | |||||
dswap.f | |||||
dsymm.f | |||||
dsymv.f | |||||
dsyr.f | |||||
dsyr2.f | |||||
dsyr2k.f | |||||
dsyrk.f | |||||
dtbmv.f | |||||
dtbsv.f | |||||
dtpmv.f | |||||
dtpsv.f | |||||
dtrmm.f | |||||
dtrmv.f | |||||
dtrsm.f | |||||
dtrsv.f | |||||
dzasum.f | |||||
dznrm2.f | |||||
icamax.f | |||||
idamax.f | |||||
isamax.f | |||||
izamax.f | |||||
lsame.f | |||||
sasum.f | |||||
saxpy.f | |||||
scabs1.f | |||||
scasum.f | |||||
scnrm2.f | |||||
scopy.f | |||||
sdot.f | |||||
sdsdot.f | |||||
sgbmv.f | |||||
sgemm.f | |||||
sgemv.f | |||||
sger.f | |||||
snrm2.f | |||||
srot.f | |||||
srotg.f | level:1 | srotg.ts | 27 feb 2018 | N/A | setup given's rotation |
srotm.f | |||||
srotmg.f | level: 1 | srotlg.ts | 27 feb 2018 | N/A | setup modified Givens rotation |
ssbmv.f | |||||
sscal.f | |||||
sspmv.f | |||||
sspr.f | |||||
sspr2.f | |||||
sswap.f | |||||
ssymm.f | |||||
ssymv.f | |||||
ssyr.f | |||||
ssyr2.f | |||||
ssyr2k.f | |||||
ssyrk.f | |||||
stbmv.f | |||||
stbsv.f | |||||
stpmv.f | |||||
stpsv.f | |||||
strmm.f | |||||
strmv.f | |||||
strsm.f | |||||
strsv.f | |||||
xerbla.f | |||||
xerbla_array.f | |||||
zaxpy.f | |||||
zcopy.f | |||||
zdotc.f | |||||
zdotu.f | |||||
zdrot.f | |||||
zdscal.f | |||||
zgbmv.f | |||||
zgemm.f | |||||
zgemv.f | |||||
zgerc.f | |||||
zgeru.f | |||||
zhbmv.f | |||||
zhemm.f | |||||
zhemv.f | |||||
zher.f | |||||
zher2.f | |||||
zher2k.f | |||||
zherk.f | |||||
zhpmv.f | |||||
zhpr.f | |||||
zhpr2.f | |||||
zrotg.f | |||||
zscal.f | |||||
zswap.f | |||||
zsymm.f | |||||
zsyr2k.f | |||||
zsyrk.f | |||||
ztbmv.f | |||||
ztbsv.f | |||||
ztpmv.f | |||||
ztpsv.f | |||||
ztrmm.f | |||||
ztrmv.f | |||||
ztrsm.f | |||||
ztrsv.f |
smldkjqsefhqdzer
SROTG - setup Givens rotation
SROTMG - setup modified Givens rotation
SROT - apply Givens rotation
SROTM - apply modified Givens rotation
SSWAP - swap x and y
SSCAL - x = a*x
SCOPY - copy x into y
SAXPY - y = a*x + y
SDOT - dot product
SDSDOT - dot product with extended precision accumulation
SNRM2 - Euclidean norm
SCNRM2- Euclidean norm
SASUM - sum of absolute values
ISAMAX - index of max abs value
DOUBLE
DROTG - setup Givens rotation
DROTMG - setup modified Givens rotation
DROT - apply Givens rotation
DROTM - apply modified Givens rotation
DSWAP - swap x and y
DSCAL - x = a*x
DCOPY - copy x into y
DAXPY - y = a*x + y
DDOT - dot product
DSDOT - dot product with extended precision accumulation
DNRM2 - Euclidean norm
DZNRM2 - Euclidean norm
DASUM - sum of absolute values
IDAMAX - index of max abs value
COMPLEX
CROTG - setup Givens rotation
CSROT - apply Givens rotation
CSWAP - swap x and y
CSCAL - x = a*x
CSSCAL - x = a*x
CCOPY - copy x into y
CAXPY - y = a*x + y
CDOTU - dot product
CDOTC - dot product, conjugating the first vector
SCASUM - sum of absolute values
ICAMAX - index of max abs value
DOUBLE COMLPEX
ZROTG - setup Givens rotation
ZDROTF - apply Givens rotation
ZSWAP - swap x and y
ZSCAL - x = a*x
ZDSCAL - x = a*x
ZCOPY - copy x into y
ZAXPY - y = a*x + y
ZDOTU - dot product
ZDOTC - dot product, conjugating the first vector
DZASUM - sum of absolute values
IZAMAX - index of max abs value
LEVEL 2 Single
SGEMV - matrix vector multiply
SGBMV - banded matrix vector multiply
SSYMV - symmetric matrix vector multiply
SSBMV - symmetric banded matrix vector multiply
SSPMV - symmetric packed matrix vector multiply
STRMV - triangular matrix vector multiply
STBMV - triangular banded matrix vector multiply
STPMV - triangular packed matrix vector multiply
STRSV - solving triangular matrix problems
STBSV - solving triangular banded matrix problems
STPSV - solving triangular packed matrix problems
SGER - performs the rank 1 operation A := alphaxy' + A
SSYR - performs the symmetric rank 1 operation A := alphaxx' + A
SSPR - symmetric packed rank 1 operation A := alphaxx' + A
SSYR2 - performs the symmetric rank 2 operation, A := alphaxy' + alphayx' + A
SSPR2 - performs the symmetric packed rank 2 operation, A := alphaxy' + alphayx' + A
Double
DGEMV - matrix vector multiply
DGBMV - banded matrix vector multiply
DSYMV - symmetric matrix vector multiply
DSBMV - symmetric banded matrix vector multiply
DSPMV - symmetric packed matrix vector multiply
DTRMV - triangular matrix vector multiply
DTBMV - triangular banded matrix vector multiply
DTPMV - triangular packed matrix vector multiply
DTRSV - solving triangular matrix problems
DTBSV - solving triangular banded matrix problems
DTPSV - solving triangular packed matrix problems
DGER - performs the rank 1 operation A := alphaxy' + A
DSYR - performs the symmetric rank 1 operation A := alphaxx' + A
DSPR - symmetric packed rank 1 operation A := alphaxx' + A
DSYR2 - performs the symmetric rank 2 operation, A := alphaxy' + alphayx' + A
DSPR2 - performs the symmetric packed rank 2 operation, A := alphaxy' + alphayx' + A
Complex
CGEMV - matrix vector multiply
CGBMV - banded matrix vector multiply
CHEMV - hermitian matrix vector multiply
CHBMV - hermitian banded matrix vector multiply
CHPMV - hermitian packed matrix vector multiply
CTRMV - triangular matrix vector multiply
CTBMV - triangular banded matrix vector multiply
CTPMV - triangular packed matrix vector multiply
CTRSV - solving triangular matrix problems
CTBSV - solving triangular banded matrix problems
CTPSV - solving triangular packed matrix problems
CGERU - performs the rank 1 operation A := alphaxy' + A
CGERC - performs the rank 1 operation A := alphaxconjg( y' ) + A
CHER - hermitian rank 1 operation A := alphaxconjg(x') + A
CHPR - hermitian packed rank 1 operation A := alphaxconjg( x' ) + A
CHER2 - hermitian rank 2 operation
CHPR2 - hermitian packed rank 2 operation
Double Complex
ZGEMV - matrix vector multiply
ZGBMV - banded matrix vector multiply
ZHEMV - hermitian matrix vector multiply
ZHBMV - hermitian banded matrix vector multiply
ZHPMV - hermitian packed matrix vector multiply
ZTRMV - triangular matrix vector multiply
ZTBMV - triangular banded matrix vector multiply
ZTPMV - triangular packed matrix vector multiply
ZTRSV - solving triangular matrix problems
ZTBSV - solving triangular banded matrix problems
ZTPSV - solving triangular packed matrix problems
ZGERU - performs the rank 1 operation A := alphaxy' + A
ZGERC - performs the rank 1 operation A := alphaxconjg( y' ) + A
ZHER - hermitian rank 1 operation A := alphaxconjg(x') + A
ZHPR - hermitian packed rank 1 operation A := alphaxconjg( x' ) + A
ZHER2 - hermitian rank 2 operation
ZHPR2 - hermitian packed rank 2 operation
LEVEL 3 Single
SGEMM - matrix matrix multiply
SSYMM - symmetric matrix matrix multiply
SSYRK - symmetric rank-k update to a matrix
SSYR2K - symmetric rank-2k update to a matrix
STRMM - triangular matrix matrix multiply
STRSM - solving triangular matrix with multiple right hand sides
Double
DGEMM - matrix matrix multiply
DSYMM - symmetric matrix matrix multiply
DSYRK - symmetric rank-k update to a matrix
DSYR2K - symmetric rank-2k update to a matrix
DTRMM - triangular matrix matrix multiply
DTRSM - solving triangular matrix with multiple right hand sides
Complex
CGEMM - matrix matrix multiply
CSYMM - symmetric matrix matrix multiply
CHEMM - hermitian matrix matrix multiply
CSYRK - symmetric rank-k update to a matrix
CHERK - hermitian rank-k update to a matrix
CSYR2K - symmetric rank-2k update to a matrix
CHER2K - hermitian rank-2k update to a matrix
CTRMM - triangular matrix matrix multiply
CTRSM - solving triangular matrix with multiple right hand sides
Double Complex
ZGEMM - matrix matrix multiply
ZSYMM - symmetric matrix matrix multiply
ZHEMM - hermitian matrix matrix multiply
ZSYRK - symmetric rank-k update to a matrix
ZHERK - hermitian rank-k update to a matrix
ZSYR2K - symmetric rank-2k update to a matrix
ZHER2K - hermitian rank-2k update to a matrix
ZTRMM - triangular matrix matrix multiply
ZTRSM - solving triangular matrix with multiple right hand sides
Some notes on Matrix symbols
https://fsymbols.com/generators/overline/
A̅ᵗ Conjugate transpose B̅ Conjugate
A̅ᵗ ∙ B̅
FAQs
Javascript Pure Implementation of BLAS Level 1, level 2, level 3 functions
We found that blasjs demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Oracle seeks to dismiss fraud claims in the JavaScript trademark dispute, delaying the case and avoiding questions about its right to the name.
Security News
The Linux Foundation is warning open source developers that compliance with global sanctions is mandatory, highlighting legal risks and restrictions on contributions.
Security News
Maven Central now validates Sigstore signatures, making it easier for developers to verify the provenance of Java packages.