New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

blasjs

Package Overview
Dependencies
Maintainers
1
Versions
15
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

blasjs

Javascript Pure Implementation of BLAS Level 1, level 2, level 3 functions

  • 1.0.0
  • Source
  • npm
  • Socket score

Version published
Maintainers
1
Created
Source

BLASjs (Basic Linear Algebra Subprograms)

Pure Javascript (Typescript) implementation of BLAS (Basic Linear Algebra Subprograms).

  • BLAS cheat sheet in pdf.
  • BLAS routines overview.

Progress

summary

Files created to mimic intrinsic fortran routines not existing in javascript.

fortran routinets-filejavascript function name
SIGN_helper.tsfsign

Level 1

SINGLE

fortran filelevelts fileport datetest-suite-datebase functions
caxpy.flevel 1caxpy.tsy = a*x + y
ccopy.f
cdotc.f
cdotu.f
cgbmv.f
cgemm.f
cgemv.f
cgerc.f
cgeru.f
chbmv.f
chemm.f
chemv.f
cher.f
cher2.f
cher2k.f
cherk.f
chpmv.f
chpr.f
chpr2.f
crotg.f
cscal.f
csrot.f
csscal.f
cswap.f
csymm.f
csyr2k.f
csyrk.f
ctbmv.f
ctbsv.f
ctpmv.f
ctpsv.f
ctrmm.f
ctrmv.f
ctrsm.f
ctrsv.f
dasum.f
daxpy.f
dcabs1.f
dcopy.f
ddot.f
dgbmv.f
dgemm.f
dgemv.f
dger.f
dnrm2.f
drot.f
drotg.f
drotm.f
drotmg.f
dsbmv.f
dscal.f
dsdot.f
dspmv.f
dspr.f
dspr2.f
dswap.f
dsymm.f
dsymv.f
dsyr.f
dsyr2.f
dsyr2k.f
dsyrk.f
dtbmv.f
dtbsv.f
dtpmv.f
dtpsv.f
dtrmm.f
dtrmv.f
dtrsm.f
dtrsv.f
dzasum.f
dznrm2.f
icamax.f
idamax.f
isamax.f
izamax.f
lsame.f
sasum.f
saxpy.f
scabs1.f
scasum.f
scnrm2.f
scopy.f
sdot.f
sdsdot.f
sgbmv.f
sgemm.f
sgemv.f
sger.f
snrm2.f
srot.f
srotg.flevel:1srotg.ts27 feb 2018N/Asetup given's rotation
srotm.f
srotmg.flevel: 1srotlg.ts27 feb 2018N/Asetup modified Givens rotation
ssbmv.f
sscal.f
sspmv.f
sspr.f
sspr2.f
sswap.f
ssymm.f
ssymv.f
ssyr.f
ssyr2.f
ssyr2k.f
ssyrk.f
stbmv.f
stbsv.f
stpmv.f
stpsv.f
strmm.f
strmv.f
strsm.f
strsv.f
xerbla.f
xerbla_array.f
zaxpy.f
zcopy.f
zdotc.f
zdotu.f
zdrot.f
zdscal.f
zgbmv.f
zgemm.f
zgemv.f
zgerc.f
zgeru.f
zhbmv.f
zhemm.f
zhemv.f
zher.f
zher2.f
zher2k.f
zherk.f
zhpmv.f
zhpr.f
zhpr2.f
zrotg.f
zscal.f
zswap.f
zsymm.f
zsyr2k.f
zsyrk.f
ztbmv.f
ztbsv.f
ztpmv.f
ztpsv.f
ztrmm.f
ztrmv.f
ztrsm.f
ztrsv.f

smldkjqsefhqdzer

SROTG - setup Givens rotation

SROTMG - setup modified Givens rotation

SROT - apply Givens rotation

SROTM - apply modified Givens rotation

SSWAP - swap x and y

SSCAL - x = a*x

SCOPY - copy x into y

SAXPY - y = a*x + y

SDOT - dot product

SDSDOT - dot product with extended precision accumulation

SNRM2 - Euclidean norm

SCNRM2- Euclidean norm

SASUM - sum of absolute values

ISAMAX - index of max abs value

DOUBLE

DROTG - setup Givens rotation

DROTMG - setup modified Givens rotation

DROT - apply Givens rotation

DROTM - apply modified Givens rotation

DSWAP - swap x and y

DSCAL - x = a*x

DCOPY - copy x into y

DAXPY - y = a*x + y

DDOT - dot product

DSDOT - dot product with extended precision accumulation

DNRM2 - Euclidean norm

DZNRM2 - Euclidean norm

DASUM - sum of absolute values

IDAMAX - index of max abs value

COMPLEX

CROTG - setup Givens rotation

CSROT - apply Givens rotation

CSWAP - swap x and y

CSCAL - x = a*x

CSSCAL - x = a*x

CCOPY - copy x into y

CAXPY - y = a*x + y

CDOTU - dot product

CDOTC - dot product, conjugating the first vector

SCASUM - sum of absolute values

ICAMAX - index of max abs value

DOUBLE COMLPEX

ZROTG - setup Givens rotation

ZDROTF - apply Givens rotation

ZSWAP - swap x and y

ZSCAL - x = a*x

ZDSCAL - x = a*x

ZCOPY - copy x into y

ZAXPY - y = a*x + y

ZDOTU - dot product

ZDOTC - dot product, conjugating the first vector

DZASUM - sum of absolute values

IZAMAX - index of max abs value

LEVEL 2 Single

SGEMV - matrix vector multiply

SGBMV - banded matrix vector multiply

SSYMV - symmetric matrix vector multiply

SSBMV - symmetric banded matrix vector multiply

SSPMV - symmetric packed matrix vector multiply

STRMV - triangular matrix vector multiply

STBMV - triangular banded matrix vector multiply

STPMV - triangular packed matrix vector multiply

STRSV - solving triangular matrix problems

STBSV - solving triangular banded matrix problems

STPSV - solving triangular packed matrix problems

SGER - performs the rank 1 operation A := alphaxy' + A

SSYR - performs the symmetric rank 1 operation A := alphaxx' + A

SSPR - symmetric packed rank 1 operation A := alphaxx' + A

SSYR2 - performs the symmetric rank 2 operation, A := alphaxy' + alphayx' + A

SSPR2 - performs the symmetric packed rank 2 operation, A := alphaxy' + alphayx' + A

Double

DGEMV - matrix vector multiply

DGBMV - banded matrix vector multiply

DSYMV - symmetric matrix vector multiply

DSBMV - symmetric banded matrix vector multiply

DSPMV - symmetric packed matrix vector multiply

DTRMV - triangular matrix vector multiply

DTBMV - triangular banded matrix vector multiply

DTPMV - triangular packed matrix vector multiply

DTRSV - solving triangular matrix problems

DTBSV - solving triangular banded matrix problems

DTPSV - solving triangular packed matrix problems

DGER - performs the rank 1 operation A := alphaxy' + A

DSYR - performs the symmetric rank 1 operation A := alphaxx' + A

DSPR - symmetric packed rank 1 operation A := alphaxx' + A

DSYR2 - performs the symmetric rank 2 operation, A := alphaxy' + alphayx' + A

DSPR2 - performs the symmetric packed rank 2 operation, A := alphaxy' + alphayx' + A

Complex

CGEMV - matrix vector multiply

CGBMV - banded matrix vector multiply

CHEMV - hermitian matrix vector multiply

CHBMV - hermitian banded matrix vector multiply

CHPMV - hermitian packed matrix vector multiply

CTRMV - triangular matrix vector multiply

CTBMV - triangular banded matrix vector multiply

CTPMV - triangular packed matrix vector multiply

CTRSV - solving triangular matrix problems

CTBSV - solving triangular banded matrix problems

CTPSV - solving triangular packed matrix problems

CGERU - performs the rank 1 operation A := alphaxy' + A

CGERC - performs the rank 1 operation A := alphaxconjg( y' ) + A

CHER - hermitian rank 1 operation A := alphaxconjg(x') + A

CHPR - hermitian packed rank 1 operation A := alphaxconjg( x' ) + A

CHER2 - hermitian rank 2 operation

CHPR2 - hermitian packed rank 2 operation

Double Complex

ZGEMV - matrix vector multiply

ZGBMV - banded matrix vector multiply

ZHEMV - hermitian matrix vector multiply

ZHBMV - hermitian banded matrix vector multiply

ZHPMV - hermitian packed matrix vector multiply

ZTRMV - triangular matrix vector multiply

ZTBMV - triangular banded matrix vector multiply

ZTPMV - triangular packed matrix vector multiply

ZTRSV - solving triangular matrix problems

ZTBSV - solving triangular banded matrix problems

ZTPSV - solving triangular packed matrix problems

ZGERU - performs the rank 1 operation A := alphaxy' + A

ZGERC - performs the rank 1 operation A := alphaxconjg( y' ) + A

ZHER - hermitian rank 1 operation A := alphaxconjg(x') + A

ZHPR - hermitian packed rank 1 operation A := alphaxconjg( x' ) + A

ZHER2 - hermitian rank 2 operation

ZHPR2 - hermitian packed rank 2 operation

LEVEL 3 Single

SGEMM - matrix matrix multiply

SSYMM - symmetric matrix matrix multiply

SSYRK - symmetric rank-k update to a matrix

SSYR2K - symmetric rank-2k update to a matrix

STRMM - triangular matrix matrix multiply

STRSM - solving triangular matrix with multiple right hand sides

Double

DGEMM - matrix matrix multiply

DSYMM - symmetric matrix matrix multiply

DSYRK - symmetric rank-k update to a matrix

DSYR2K - symmetric rank-2k update to a matrix

DTRMM - triangular matrix matrix multiply

DTRSM - solving triangular matrix with multiple right hand sides

Complex

CGEMM - matrix matrix multiply

CSYMM - symmetric matrix matrix multiply

CHEMM - hermitian matrix matrix multiply

CSYRK - symmetric rank-k update to a matrix

CHERK - hermitian rank-k update to a matrix

CSYR2K - symmetric rank-2k update to a matrix

CHER2K - hermitian rank-2k update to a matrix

CTRMM - triangular matrix matrix multiply

CTRSM - solving triangular matrix with multiple right hand sides

Double Complex

ZGEMM - matrix matrix multiply

ZSYMM - symmetric matrix matrix multiply

ZHEMM - hermitian matrix matrix multiply

ZSYRK - symmetric rank-k update to a matrix

ZHERK - hermitian rank-k update to a matrix

ZSYR2K - symmetric rank-2k update to a matrix

ZHER2K - hermitian rank-2k update to a matrix

ZTRMM - triangular matrix matrix multiply

ZTRSM - solving triangular matrix with multiple right hand sides

Some notes on Matrix symbols

https://fsymbols.com/generators/overline/

A̅ᵗ Conjugate transpose B̅ Conjugate

A̅ᵗ ∙ B̅

Keywords

FAQs

Package last updated on 06 May 2018

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc