Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
cytoscape-fcose
Advanced tools
The fCoSE layout for Cytoscape.js by Bilkent with fast compound node placement
The cytoscape-fcose package is an extension for Cytoscape.js that provides a layout algorithm for graph visualization. It is designed to handle large-scale graphs efficiently and offers features like compound nodes, multi-level nesting, and more.
Basic Layout
This code initializes a Cytoscape instance with a basic graph containing two nodes and one edge, and applies the fcose layout algorithm to it.
const cy = cytoscape({
container: document.getElementById('cy'),
elements: [
{ data: { id: 'a' } },
{ data: { id: 'b' } },
{ data: { id: 'ab', source: 'a', target: 'b' } }
],
style: [
{
selector: 'node',
style: {
'background-color': '#666',
'label': 'data(id)'
}
},
{
selector: 'edge',
style: {
'width': 3,
'line-color': '#ccc'
}
}
],
layout: {
name: 'fcose'
}
});
Compound Nodes
This code demonstrates the use of compound nodes, where nodes 'b' and 'c' are children of node 'a'. The fcose layout algorithm is applied to arrange the nodes.
const cy = cytoscape({
container: document.getElementById('cy'),
elements: [
{ data: { id: 'a' } },
{ data: { id: 'b', parent: 'a' } },
{ data: { id: 'c', parent: 'a' } },
{ data: { id: 'ab', source: 'b', target: 'c' } }
],
style: [
{
selector: 'node',
style: {
'background-color': '#666',
'label': 'data(id)'
}
},
{
selector: 'edge',
style: {
'width': 3,
'line-color': '#ccc'
}
}
],
layout: {
name: 'fcose'
}
});
Custom Layout Options
This code shows how to customize the fcose layout options, including setting the quality to 'proof', enabling randomization, and adding animation with a duration of 1000 milliseconds.
const cy = cytoscape({
container: document.getElementById('cy'),
elements: [
{ data: { id: 'a' } },
{ data: { id: 'b' } },
{ data: { id: 'ab', source: 'a', target: 'b' } }
],
style: [
{
selector: 'node',
style: {
'background-color': '#666',
'label': 'data(id)'
}
},
{
selector: 'edge',
style: {
'width': 3,
'line-color': '#ccc'
}
}
],
layout: {
name: 'fcose',
quality: 'proof',
randomize: true,
animate: true,
animationDuration: 1000
}
});
The cytoscape-cola package provides a layout algorithm based on the Cola.js library, which is also designed for handling large-scale graphs. It offers features like constraint-based layout and support for compound nodes. Compared to cytoscape-fcose, it focuses more on constraint-based layouts and may offer different performance characteristics.
The cytoscape-dagre package provides a layout algorithm based on the Dagre library, which is optimized for directed acyclic graphs (DAGs). It is particularly useful for hierarchical layouts. While cytoscape-fcose is more general-purpose, cytoscape-dagre excels in scenarios where a clear hierarchical structure is needed.
The cytoscape-cose-bilkent package offers a layout algorithm similar to fcose but with different optimization strategies and performance characteristics. It is also designed for large-scale graphs and supports compound nodes. The main difference lies in the specific heuristics and optimizations used in the layout process.
fCoSE (pron. "f-cosay", fast Compound Spring Embedder), is a faster version of our earlier compound spring embedder algorithm named CoSE, implemented as a Cytoscape.js extension by i-Vis Lab in Bilkent University.
Here are some demos: simple, compound, and constraints, respectively:
fCoSE layout algorithm combines the speed of spectral layout with the aesthetics of force-directed layout. fCoSE runs up to 2 times as fast as CoSE while achieving similar aesthetics.
Furthermore, fCoSE also supports a fairly rich set of constraint types (i.e., fixed position, vertical/horizontal alignment and relative placement).
You can see constraint support in action in the following videos: fixed node, alignment, relative placement, hybrid, real life graphs. Constraints can also be added incrementally on a given layout.
Please cite the following when you use this layout:
H. Balci and U. Dogrusoz, "fCoSE: A Fast Compound Graph Layout Algorithm with Constraint Support," in IEEE Transactions on Visualization and Computer Graphics, 28(12), pp. 4582-4593, 2022.
U. Dogrusoz, E. Giral, A. Cetintas, A. Civril and E. Demir, "A Layout Algorithm For Undirected Compound Graphs", Information Sciences, 179, pp. 980-994, 2009.
fCoSE supports user-defined placement constraints as well as its full support for compound graphs. These constraints may be defined for simple nodes. Supported constraint types are:
Fixed node constraint: The user may provide exact desired positions for a set of nodes called fixed nodes. For example, in order to position node n1 to (x: 100, y: 200) and node n2 to (x: 200, y: -300) as a result of the layout, fixedNodeConstraint
option should be set as follows:
fixedNodeConstraint: [{nodeId: 'n1', position: {x: 100, y: 200}},
{nodeId: 'n2', position: {x: 200, y: -300}}],
Alignment constraint: This constraint aims to align two or more nodes (with respect to their centers) vertically or horizontally. For example, for the vertical alignment of nodes {n1, n2, n3} and {n4, n5}, and horizontal alignment of nodes {n2, n4} as a result of the layout, alignmentConstraint
option should be set as follows:
alignmentConstraint: {vertical: [['n1', 'n2', 'n3'], ['n4', 'n5']], horizontal: [['n2', 'n4']]},
Note: Alignment constraints in a direction must be given in most compact form. Example: ['n1', 'n2', 'n3']
instead of ['n1', 'n2'], ['n1', 'n3']
.
Relative placement constraint: The user may constrain the position of a node relative to another node in either vertical or horizontal direction. For example, in order to position node n1 to be above of node n2 by at least 100 pixels and position node n3 to be on the left of node n4 by at least 75 pixels as a result of the layout, relativePlacementConstraint
option should be set as follows:
relativePlacementConstraint: [{top: 'n1', bottom: 'n2', gap: 100},
{left: 'n3', right: 'n4', gap: 75}],
The gap
property is optional. If it is omitted, average idealEdgeLength
is used as the gap value.
Download the library:
npm install cytoscape-fcose
,bower install cytoscape-fcose
, orImport the library as appropriate for your project:
ES import:
import cytoscape from 'cytoscape';
import fcose from 'cytoscape-fcose';
cytoscape.use( fcose );
CommonJS require:
let cytoscape = require('cytoscape');
let fcose = require('cytoscape-fcose');
cytoscape.use( fcose ); // register extension
AMD:
require(['cytoscape', 'cytoscape-fcose'], function( cytoscape, fcose ){
fcose( cytoscape ); // register extension
});
Plain HTML/JS has the extension registered for you automatically, because no require()
is needed. Just add the following files:
<script src="https://unpkg.com/layout-base/layout-base.js"></script>
<script src="https://unpkg.com/cose-base/cose-base.js"></script>
<script src="https://unpkg.com/cytoscape-fcose/cytoscape-fcose.js"></script>
When calling the layout, e.g. cy.layout({ name: 'fcose', ... })
, the following options are supported:
var defaultOptions = {
// 'draft', 'default' or 'proof'
// - "draft" only applies spectral layout
// - "default" improves the quality with incremental layout (fast cooling rate)
// - "proof" improves the quality with incremental layout (slow cooling rate)
quality: "default",
// Use random node positions at beginning of layout
// if this is set to false, then quality option must be "proof"
randomize: true,
// Whether or not to animate the layout
animate: true,
// Duration of animation in ms, if enabled
animationDuration: 1000,
// Easing of animation, if enabled
animationEasing: undefined,
// Fit the viewport to the repositioned nodes
fit: true,
// Padding around layout
padding: 30,
// Whether to include labels in node dimensions. Valid in "proof" quality
nodeDimensionsIncludeLabels: false,
// Whether or not simple nodes (non-compound nodes) are of uniform dimensions
uniformNodeDimensions: false,
// Whether to pack disconnected components - cytoscape-layout-utilities extension should be registered and initialized
packComponents: true,
// Layout step - all, transformed, enforced, cose - for debug purpose only
step: "all",
/* spectral layout options */
// False for random, true for greedy sampling
samplingType: true,
// Sample size to construct distance matrix
sampleSize: 25,
// Separation amount between nodes
nodeSeparation: 75,
// Power iteration tolerance
piTol: 0.0000001,
/* incremental layout options */
// Node repulsion (non overlapping) multiplier
nodeRepulsion: node => 4500,
// Ideal edge (non nested) length
idealEdgeLength: edge => 50,
// Divisor to compute edge forces
edgeElasticity: edge => 0.45,
// Nesting factor (multiplier) to compute ideal edge length for nested edges
nestingFactor: 0.1,
// Maximum number of iterations to perform - this is a suggested value and might be adjusted by the algorithm as required
numIter: 2500,
// For enabling tiling
tile: true,
// The comparison function to be used while sorting nodes during tiling operation.
// Takes the ids of 2 nodes that will be compared as a parameter and the default tiling operation is performed when this option is not set.
// It works similar to ``compareFunction`` parameter of ``Array.prototype.sort()``
// If node1 is less then node2 by some ordering criterion ``tilingCompareBy(nodeId1, nodeId2)`` must return a negative value
// If node1 is greater then node2 by some ordering criterion ``tilingCompareBy(nodeId1, nodeId2)`` must return a positive value
// If node1 is equal to node2 by some ordering criterion ``tilingCompareBy(nodeId1, nodeId2)`` must return 0
tilingCompareBy: undefined,
// Represents the amount of the vertical space to put between the zero degree members during the tiling operation(can also be a function)
tilingPaddingVertical: 10,
// Represents the amount of the horizontal space to put between the zero degree members during the tiling operation(can also be a function)
tilingPaddingHorizontal: 10,
// Gravity force (constant)
gravity: 0.25,
// Gravity range (constant) for compounds
gravityRangeCompound: 1.5,
// Gravity force (constant) for compounds
gravityCompound: 1.0,
// Gravity range (constant)
gravityRange: 3.8,
// Initial cooling factor for incremental layout
initialEnergyOnIncremental: 0.3,
/* constraint options */
// Fix desired nodes to predefined positions
// [{nodeId: 'n1', position: {x: 100, y: 200}}, {...}]
fixedNodeConstraint: undefined,
// Align desired nodes in vertical/horizontal direction
// {vertical: [['n1', 'n2'], [...]], horizontal: [['n2', 'n4'], [...]]}
alignmentConstraint: undefined,
// Place two nodes relatively in vertical/horizontal direction
// [{top: 'n1', bottom: 'n2', gap: 100}, {left: 'n3', right: 'n4', gap: 75}, {...}]
relativePlacementConstraint: undefined,
/* layout event callbacks */
ready: () => {}, // on layoutready
stop: () => {} // on layoutstop
};
To be able to use packComponents
option, cytoscape-layout-utilities
extension should also be registered in the application.
Packing related options should be set via cytoscape-layout-utilities
extension.
If they are not set, fCoSE uses default options.
npm run test
: Run Mocha tests in ./test
npm run build
: Build ./src/**
into cytoscape-fcose.js
npm run watch
: Automatically build on changes with live reloading (N.b. you must already have an HTTP server running)npm run dev
: Automatically build on changes with live reloading with webpack dev servernpm run lint
: Run eslint on the sourceN.b. all builds use babel, so modern ES features can be used in the src
.
This project is set up to automatically be published to npm and bower. To publish:
npm run build:release
git commit -am "Build for release"
npm version major|minor|patch
git push && git push --tags
npm publish .
bower register cytoscape-fcose https://github.com/iVis-at-Bilkent/cytoscape.js-fcose.git
FAQs
The fCoSE layout for Cytoscape.js by Bilkent with fast compound node placement
We found that cytoscape-fcose demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.