d3Kit
d3Kit provides thin scaffold for creating reusable and responsive charts with D3.
It aims to relieve you from the same groundwork tasks you found yourself doing again and again.
Introduction slides |
Getting started guide |
API Reference |
All Documentation
For developers who have tried d3Kit v1-2, d3Kit v3 was rewritten to support D3 v4, consider several new use cases (<canvas>
, for example) and use ES6 class for the implementation, making every chart can be extended easily.
Documentation of version 1-2 can be found here
Install
npm install d3kit --save
See getting start guide for more details.
Examples
Here are a few examples of d3Kit in action:
Why should you use d3Kit?
😫 You are tired of copying the boilerplate d3.select('body').append('svg')...
from D3 examples.
There is SvgChart
for that.
😫 You want to create a chart on <canvas>
but never remember how to handle different screen resolution (retina display).
There is CanvasChart
for that.
🤔 You want to create a reusable chart in D3.
You can extends from SvgChart
, CanvasChart
, or AbstractChart
.
😫 You want to create a responsive chart, but are tired of listening to window resize or manually polling for changes of element size by yourself.
If your chart extends from SvgChart
, CanvasChart
or AbstractChart
, you get that ability for free.
🤔 You want to make a responsive chart that maintains aspect ratio.
If your chart extends from SvgChart
, CanvasChart
or AbstractChart
, you get that ability for free.
If your chart extends from SvgChart
, CanvasChart
or AbstractChart
, you get that ability for free.
🤔 You are familiar with creating charts in D3 and want to adapt them easily into React or angular components.
Currently there are react-d3kit and angular-d3kit-adapter that can convert charts written in d3Kit into React and angular components, respectively, in a few lines of code.
What is d3Kit?
The core of d3Kit are base classes for creating a chart. Currently there are SvgChart
and CanvasChart
, both extends from AbstractChart
. (This was revised and improved from the Skeleton
in d3Kit v1-2.)
AbstractChart
- takes a target container (usually a
<div>
) and helps you build a chart inside. - encapsulates D3's margin convention. The dimension of each chart is defined by
width
, height
and margin
.
chart.width()
get/set the total width (including margin)chart.height()
get/set the total height (including margin)chart.margin()
get/set the marginchart.getInnerWidth()
returns width excluding margin. This is usually used as the boundary of the x-axis.chart.getInnerHeight()
returns height excluding margin. This is usually used as the boundary of the y-axis.
- can resize the chart to be percentage of a container and/or maintain aspect ratio
chart.fit(fitOptions:Object)
Calling this function with single argument will resize the chart to fit into the container once. Please refer to slimfit documentation for fitOptions
.
- can listen to resize (either window or element) and update the chart size to fit container.
chart.fit(fitOptions:Object, watchOptions:Boolean/Object)
Calling with two arguments, such as chart.fit({...}, true)
or chart.fit({...}, {...})
, will enable watching. Please refer to slimfit documentation for fitOptions
and watchOptions
chart.stopFitWatcher()
will disable the watcher.
- dispatches event
resize
when the chart is resized.
chart.on('resize', listener)
is then use to register what to do after the chart is resized.
- defines two main input channels
.data(...)
and .options(...)
and dispatches event data
and options
when they are changed, respectively.
chart.data(data)
get/set data.chart.options(options)
get/merge optionschart.on('data', listener)
chart.on('options', listener)
- assumes little about how you implement a chart. You can extends the class and implements it the way you want.
Most of the time you will not need to access AbstractChart
directly, but you will use one of its children: SvgChart
or CanvasChart
.
SvgChart
This class creates <svg>
boilerplate inside the container.
A. Scaffold and create something quickly
<div id="chart0"></div>
import { SvgChart } from 'd3kit';
const chart = new SvgChart('#chart0', {
initialWidth: 720,
initialHeight: 500,
margin: { top: 30, right: 30, bottom: 30, left: 30 },
offset: { x: 0.5, y: 0.5 }
});
The output will looks like this.
<div id="chart0">
<svg width="720" height="500">
<g transform="translate(30.5,30.5)"></g>
</svg>
</div>
So you can append a circle or do anything you usually do with D3.
chart.rootG.append('circle')
.attr('cx', 10)
.attr('cy', 10)
.attr('r', 5)
B. Create a reusable chart
First create a chart by extending SvgChart
.
import { SvgChart } from 'd3kit';
import { scaleLinear, scaleOrdinal, schemeCategory10 } from 'd3-scale';
import { axisLeft, axisBottom } from 'd3-axis';
import { extent } from 'd3-array';
class SvgBubbleChart extends SvgChart {
static getDefaultOptions() {
return deepExtend(
super.getDefaultOptions(),
{
margin: {top: 60, right: 60, bottom: 60, left: 60},
initialWidth: 800,
initialHeight: 460
}
);
}
static getCustomEventNames() {
return ['bubbleClick'];
}
constructor(selector, options) {
super(selector, options);
this.xScale = scaleLinear();
this.yScale = scaleLinear();
this.color = scaleOrdinal(schemeCategory10);
this.xAxis = axisBottom().scale(this.xScale);
this.yAxis = axisLeft().scale(this.yScale);
this.xAxisG = this.rootG.append('g');
this.yAxisG = this.rootG.append('g');
this.visualize = this.visualize.bind(this);
this.on('resize.default', this.visualize);
this.on('data.default', this.visualize);
}
visualize() {
if(!this.hasData()) return;
const data = this.data();
this.xScale.domain(extent(data, d => d.x))
.range([0, this.getInnerWidth()]);
this.yScale.domain(extent(data, d => d.y))
.range([this.getInnerHeight(), 0]);
this.xAxisG
.attr('transform', `translate(0,${this.getInnerHeight()})`)
.call(this.xAxis);
this.yAxisG.call(this.yAxis);
const selection = this.rootG.selectAll('circle')
.data(data);
selection.exit().remove();
const sEnter = selection.enter().append('circle')
.attr('cx', d => this.xScale(d.x))
.attr('cy', d => this.yScale(d.y))
.on('click', (...args) => {
this.dispatcher.apply('bubbleClick', this, args);
});
selection.merge(sEnter)
.attr('cx', d => this.xScale(d.x))
.attr('cy', d => this.yScale(d.y))
.attr('r', d => d.r)
.style('fill', (d,i) => this.color(i));
}
}
export default SvgBubbleChart;
Then use it
const chart1 = new SvgBubbleChart('#chart1', {
margin: { top: 20 },
initialWidth: 300,
initialHeight: 300,
})
.data(bubbles)
.on('bubbleClick', d => { alert(JSON.stringify(d)); })
.fit({
mode: 'aspectRatio',
ratio: 16/9,
}, true);
CanvasChart
While SvgChart
creates necessary element for building chart with <svg>
. This class creates <canvas>
inside the container. It also handles different screen resolution for you (retina display vs. standard display).
A. Scaffold and create something quickly
<div id="chart0"></div>
import { SvgChart } from 'd3kit';
const chart = new CanvasChart('#chart0', {
initialWidth: 720,
initialHeight: 500,
margin: { top: 30, right: 30, bottom: 30, left: 30 }
});
The output will looks like this.
<div id="chart0">
<canvas width="1440" height="1000" style="width: 720px; height: 500px;"></canvas>
</div>
So you can draw on the canvas
const ctx = chart.getContext2d();
ctx.fillRect(10, 10, 10, 10);
B. Create a reusable chart
import { CanvasChart } from 'd3kit';
import { scaleLinear, scaleOrdinal, schemeCategory10 } from 'd3-scale';
import { extent } from 'd3-array';
class CanvasBubbleChart extends CanvasChart {
static getDefaultOptions() {
return deepExtend(
super.getDefaultOptions(),
{
margin: {top: 60, right: 60, bottom: 60, left: 60},
initialWidth: 800,
initialHeight: 460
}
);
}
static getCustomEventNames() {
return [];
}
constructor(selector, options) {
super(selector, options);
this.xScale = scaleLinear();
this.yScale = scaleLinear();
this.color = scaleOrdinal(schemeCategory10);
this.visualize = this.visualize.bind(this);
this.on('resize.default', this.visualize);
this.on('data.default', this.visualize);
}
visualize() {
this.clear();
if(!this.hasData()){
return;
}
const data = this.data();
this.xScale.domain(extent(data, d => d.x))
.range([0, this.getInnerWidth()]);
this.yScale.domain(extent(data, d => d.y))
.range([this.getInnerHeight(), 0]);
const ctx = this.getContext2d();
data.forEach((d,i) => {
ctx.fillStyle = this.color(i);
ctx.fillRect(
this.xScale(d.x) - d.r,
this.yScale(d.y) - d.r,
d.r * 2,
d.r * 2
);
});
}
}
export default CanvasBubbleChart;
Other features
LayerOrganizer
This was created from a habit of creating many <g>
s inside the root <g>
.
Input
<svg>
<g class="container"></g>
</svg>
const layers = new LayerOrganizer(d3.selection('.container'));
layers.create(['content', 'x-axis', 'y-axis']);
Output
<svg>
<g class="container">
<g class="content-layer"></g>
<g class="x-axis-layer"></g>
<g class="y-axis-layer"></g>
</g>
</svg>
All SvgChart
includes chart.layers
by default, which is new LayerOrganizer(chart.container)
.
There are more features. Read more here.
Chartlet
d3Kit v1-2 also helps you create reusable subcomponent (a.k.a. Chartlet). We have not ported it to v3 yet.
Documentation
Want to learn more? Follow these links.
(We are still updating them to reflect the latest API, so some pages may be a bit outdated at the moment.)
Appendix
A diagram explaining D3's margin convention
Authors
License
© 2015-2016 Twitter, Inc. MIT License