Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

didyoumean3

Package Overview
Dependencies
Maintainers
1
Versions
16
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

didyoumean3

🚀 the super fast and easy didyoumean which use dice-coefficient and levenshtein

  • 1.0.0
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
867
increased by51.84%
Maintainers
1
Weekly downloads
 
Created
Source

didyoumean3

notice: Covers most situations and still needs to be optimized, i will do better!

features

  • Shortest editing algorithm with built-in levenshtein and dice-coefficient
  • Support custom extended edit distance algorithm
  • Support custom your return result
  • Typescript
  • Super fast 🚀
  • Support emoji or diacritics

usage

npm i didyoumean3
const didyoumean3 = require('didyoumean3').default
// or if you are using TypeScript or ES module
import didyoumean3 from 'didyoumean3'

let input = 'insargrm'
let list = [
  'facebook', 'INSTAgram', ' in stagram', 'baidu', 'twitter', 'wechat', 'instagram', 'linkedin'
]

// levenshtein
didyoumean3(input, list) // instagram

// dice-coefficient
didyoumean3(input, list, { similar: 'dice' }) // instagram

read more config info 👇

options description

I'm lazy, I just give the declaration file 👇

export interface Val {
  (x: string | object): string
}

export interface Similar {
  (a: string, b: string, opts?: Partial<Options>): number
}

export interface Return {
  (x: any): any
}

export interface Normalize {
  (x: string): string
}

// dice-coefficient or levenshtein
export type BuiltInSimilar = 'dice' | 'leven'

/**
 * @type {boolean} ignore: ignore case 'A' -> 'a'
 * @type {boolean} trim: ' a bcs ' -> 'a bcs'
 * @type {boolean} trimAll: ' a bcs' -> 'abcs'
 * @type {boolean} diacritics: 'café' -> 'café'.normalize()
 * @type {Function} val: when you need find the best result in a object list, it's useful
 * @type {string | Function} similar: use builtin shortest edit-distance algorithm or yours
 * @type {Function} result: you can custom your return result
 * @type {Function} compartor: you can custom the compare rules, because will maybe use the highest score or the lowest score
 */
export type Options = {
  ignore?: boolean, // default false
  trim?: boolean, // default true
  trimAll?: boolean, // default false
  diacritics?: boolean, // default false
  normalize?: Normalize, // default undefined
  val?: Val, // default undefined
  similar?: BuiltInSimilar | Similar, // default leven
  result?: Return, // default undefined
  compartor?: Compartor // default undefined
}

benchmark

didyoumean x 193,411 ops/sec ±1.39% (87 runs sampled)
didyoumean2 x 303,996 ops/sec ±1.72% (82 runs sampled)
didyoumean3-leven x 489,616 ops/sec ±0.76% (89 runs sampled)
didyoumean3-dice x 130,456 ops/sec ±0.57% (91 runs sampled)
Fastest is didyoumean3-leven

changelog

v-1.0.0
  1. refactor the beta version, and we can custom our algorithm
  2. we can custom our result now
  3. we can custom our normalize string function now
  4. builtin dice-coefficient or levenshtein algorithm

contributors

nobody now.

Both issure and pr are welcome!

license

MIT

Keywords

FAQs

Package last updated on 15 Jan 2020

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc