Comparing version 0.0.3-e to 0.0.3-f
/*! | ||
* DOMMatrix v0.0.3e (https://github.com/thednp/dommatrix) | ||
* DOMMatrix v0.0.3f (https://github.com/thednp/dommatrix) | ||
* Copyright 2020 © thednp | ||
@@ -4,0 +4,0 @@ * Licensed under MIT (https://github.com/thednp/DOMMatrix/blob/master/LICENSE) |
@@ -1,2 +0,2 @@ | ||
// DOMMatrix v0.0.3e | thednp © 2020 | MIT-License | ||
// DOMMatrix v0.0.3f | thednp © 2020 | MIT-License | ||
function m(m,t,n,e){e*=Math.PI/360;var i=Math.sin(e),o=Math.cos(e),a=i*i,u=Math.sqrt(m*m+t*t+n*n);0===u?(m=0,t=0,n=1):(m/=u,t/=u,n/=u);var s=m*m,f=t*t,c=n*n,h=new r;return h.m11=h.a=1-2*(f+c)*a,h.m12=h.b=2*(m*t*a+n*i*o),h.m13=2*(m*n*a-t*i*o),h.m21=h.c=2*(t*m*a-n*i*o),h.m22=h.d=1-2*(c+s)*a,h.m23=2*(t*n*a+m*i*o),h.m31=2*(n*m*a+t*i*o),h.m32=2*(n*t*a-m*i*o),h.m33=1-2*(s+f)*a,h.m14=h.m24=h.m34=0,h.m41=h.e=h.m42=h.f=h.m43=0,h.m44=1,h}function t(m,t){if(null==t)return console.error("CSSMatrix: expecting 2 parameters"),m;var n=t.m11*m.m11+t.m12*m.m21+t.m13*m.m31+t.m14*m.m41,e=t.m11*m.m12+t.m12*m.m22+t.m13*m.m32+t.m14*m.m42,i=t.m11*m.m13+t.m12*m.m23+t.m13*m.m33+t.m14*m.m43,o=t.m11*m.m14+t.m12*m.m24+t.m13*m.m34+t.m14*m.m44,a=t.m21*m.m11+t.m22*m.m21+t.m23*m.m31+t.m24*m.m41,u=t.m21*m.m12+t.m22*m.m22+t.m23*m.m32+t.m24*m.m42,s=t.m21*m.m13+t.m22*m.m23+t.m23*m.m33+t.m24*m.m43,f=t.m21*m.m14+t.m22*m.m24+t.m23*m.m34+t.m24*m.m44,c=t.m31*m.m11+t.m32*m.m21+t.m33*m.m31+t.m34*m.m41,h=t.m31*m.m12+t.m32*m.m22+t.m33*m.m32+t.m34*m.m42,l=t.m31*m.m13+t.m32*m.m23+t.m33*m.m33+t.m34*m.m43,p=t.m31*m.m14+t.m32*m.m24+t.m33*m.m34+t.m34*m.m44,y=t.m41*m.m11+t.m42*m.m21+t.m43*m.m31+t.m44*m.m41,M=t.m41*m.m12+t.m42*m.m22+t.m43*m.m32+t.m44*m.m42,x=t.m41*m.m13+t.m42*m.m23+t.m43*m.m33+t.m44*m.m43,g=t.m41*m.m14+t.m42*m.m24+t.m43*m.m34+t.m44*m.m44;return new r(n,a,c,y,e,u,h,M,i,s,l,x,o,f,p,g)}var r=function(){for(var m=[],t=arguments.length;t--;)m[t]=arguments[t];return this.setIdentity(),m&&m.length&&this.setMatrixValue(m)},n={isIdentity:{configurable:!0},is2D:{configurable:!0}};r.prototype.setMatrixValue=function(m){var t=this;if(!m||!m.length)return t;if(m.length&&"string"==typeof m[0]&&m[0].length){var n,e,i=String(m[0]).trim();if("none"==i)return t;n=i.slice(0,i.indexOf("(")),e=i.slice("matrix"===n?7:9,-1).split(",").map((function(m){return Math.abs(m)<1e-6?0:+m})),[6,16].indexOf(e.length)>-1?t=t.fromArray(e):console.error("CSSMatrix: expecting valid CSS matrix() / matrix3d() formatted String")}else m[0]instanceof r?t=t.fromMatrix(m[0]):Array.isArray(m[0])?t=t.fromArray(m[0]):Array.isArray(m)&&(t=t.fromArray(m));return t},r.prototype.toString=function(){return(this.is2D?"matrix":"matrix3d")+"("+this.toArray(1).join(",")+")"},r.prototype.toArray=function(m){var t=this;return t.is2D?[t.a,t.b,t.c,t.d,t.e,t.f]:m?[t.m11,t.m12,t.m13,t.m14,t.m21,t.m22,t.m23,t.m24,t.m31,t.m32,t.m33,t.m34,t.m41,t.m42,t.m43,t.m44]:[t.m11,t.m21,t.m31,t.m41,t.m12,t.m22,t.m32,t.m42,t.m13,t.m23,t.m33,t.m43,t.m14,t.m24,t.m34,t.m44]},r.prototype.fromMatrix=function(m){return new r(m.m11,m.m21,m.m31,m.m41,m.m12,m.m22,m.m32,m.m42,m.m13,m.m23,m.m33,m.m43,m.m14,m.m24,m.m34,m.m44)},r.prototype.fromArray=function(m){var t=new r,n=Array.from(m);return 16==n.length?(t.m11=t.a=n[0],t.m21=t.c=n[1],t.m31=n[2],t.m41=t.e=n[3],t.m12=t.b=n[4],t.m22=t.d=n[5],t.m32=n[6],t.m42=t.f=n[7],t.m13=n[8],t.m23=n[9],t.m33=n[10],t.m43=n[11],t.m14=n[12],t.m24=n[13],t.m34=n[14],t.m44=n[15]):6==n.length?(t.m11=t.a=n[0],t.m12=t.b=n[1],t.m14=t.e=n[4],t.m21=t.c=n[2],t.m22=t.d=n[3],t.m24=t.f=n[5]):console.error("CSSMatrix: expecting Array with 6/16 values"),t},r.prototype.multiply=function(m){return t(this,m)},r.prototype.translate=function(m,n,e){return null==e&&(e=0),null==n&&(n=0),t(this,function(m,t,n){var e=new r;return e.m41=e.e=m,e.m42=e.f=t,e.m43=n,e}(m,n,e))},r.prototype.scale=function(m,n,e){return null==n&&(n=m),null==e&&(e=m),t(this,function(m,t,n){var e=new r;return e.m11=e.a=m,e.m22=e.d=t,e.m33=n,e}(m,n,e))},r.prototype.rotate=function(m,n,e){return null==n&&(n=0),null==e&&(e=m,m=0),t(this,function(m,t,n){var e=new r;m*=Math.PI/180,t*=Math.PI/180,n*=Math.PI/180;var i=Math.cos(m),o=-Math.sin(m),a=Math.cos(t),u=-Math.sin(t),s=Math.cos(n),f=-Math.sin(n);return e.m11=e.a=a*s,e.m12=e.b=-a*f,e.m13=u,e.m21=e.c=o*u*s+i*f,e.m22=e.d=i*s-o*u*f,e.m23=-o*a,e.m31=o*f-i*u*s,e.m32=o*s+i*u*f,e.m33=i*a,e}(m,n,e))},r.prototype.rotateAxisAngle=function(r,n,e,i){return 4!==arguments.length?(console.error("CSSMatrix: expecting 4 values"),this):t(this,m(r,n,e,i))},r.prototype.skewX=function(m){return t(this,function(m){m*=Math.PI/180;var t=new r;return t.m21=t.c=Math.tan(m),t}(m))},r.prototype.skewY=function(m){return t(this,function(m){m*=Math.PI/180;var t=new r;return t.m12=t.b=Math.tan(m),t}(m))},n.isIdentity.get=function(){var m=this;return 1==m.m11&&0==m.m12&&0==m.m13&&0==m.m14&&0==m.m21&&1==m.m22&&0==m.m23&&0==m.m24&&0==m.m31&&0==m.m32&&1==m.m33&&0==m.m34&&0==m.m41&&0==m.m42&&0==m.m43&&1==m.m44},n.isIdentity.set=function(m){this.isIdentity=m},n.is2D.get=function(){var m=this;return 0==m.m31&&0==m.m32&&1==m.m33&&0==m.m34&&0==m.m43&&1==m.m44},n.is2D.set=function(m){this.is2D=m},r.prototype.setIdentity=function(){var m=this;return m.m11=m.a=1,m.m12=m.b=0,m.m13=0,m.m14=0,m.m21=m.c=0,m.m22=m.d=1,m.m23=0,m.m24=0,m.m31=0,m.m32=0,m.m33=1,m.m34=0,m.m41=m.e=0,m.m42=m.f=0,m.m43=0,m.m44=1,m},r.prototype.transformPoint=function(m){var t=(new r).translate(m.x,m.y,m.z);return t.m44=m.w||1,{x:(t=this.multiply(t)).m41,y:t.m42,z:t.m43,w:t.m44}},Object.defineProperties(r.prototype,n);export default r; |
/*! | ||
* DOMMatrix v0.0.3e (https://github.com/thednp/dommatrix) | ||
* DOMMatrix v0.0.3f (https://github.com/thednp/dommatrix) | ||
* Copyright 2020 © thednp | ||
@@ -4,0 +4,0 @@ * Licensed under MIT (https://github.com/thednp/DOMMatrix/blob/master/LICENSE) |
@@ -1,2 +0,2 @@ | ||
// DOMMatrix v0.0.3e | thednp © 2020 | MIT-License | ||
// DOMMatrix v0.0.3f | thednp © 2020 | MIT-License | ||
!function(m,t){"object"==typeof exports&&"undefined"!=typeof module?module.exports=t():"function"==typeof define&&define.amd?define(t):(m="undefined"!=typeof globalThis?globalThis:m||self).CSSMatrix=t()}(this,(function(){"use strict";function m(m,t,n,e){e*=Math.PI/360;var i=Math.sin(e),o=Math.cos(e),a=i*i,u=Math.sqrt(m*m+t*t+n*n);0===u?(m=0,t=0,n=1):(m/=u,t/=u,n/=u);var s=m*m,f=t*t,c=n*n,l=new r;return l.m11=l.a=1-2*(f+c)*a,l.m12=l.b=2*(m*t*a+n*i*o),l.m13=2*(m*n*a-t*i*o),l.m21=l.c=2*(t*m*a-n*i*o),l.m22=l.d=1-2*(c+s)*a,l.m23=2*(t*n*a+m*i*o),l.m31=2*(n*m*a+t*i*o),l.m32=2*(n*t*a-m*i*o),l.m33=1-2*(s+f)*a,l.m14=l.m24=l.m34=0,l.m41=l.e=l.m42=l.f=l.m43=0,l.m44=1,l}function t(m,t){if(null==t)return console.error("CSSMatrix: expecting 2 parameters"),m;var n=t.m11*m.m11+t.m12*m.m21+t.m13*m.m31+t.m14*m.m41,e=t.m11*m.m12+t.m12*m.m22+t.m13*m.m32+t.m14*m.m42,i=t.m11*m.m13+t.m12*m.m23+t.m13*m.m33+t.m14*m.m43,o=t.m11*m.m14+t.m12*m.m24+t.m13*m.m34+t.m14*m.m44,a=t.m21*m.m11+t.m22*m.m21+t.m23*m.m31+t.m24*m.m41,u=t.m21*m.m12+t.m22*m.m22+t.m23*m.m32+t.m24*m.m42,s=t.m21*m.m13+t.m22*m.m23+t.m23*m.m33+t.m24*m.m43,f=t.m21*m.m14+t.m22*m.m24+t.m23*m.m34+t.m24*m.m44,c=t.m31*m.m11+t.m32*m.m21+t.m33*m.m31+t.m34*m.m41,l=t.m31*m.m12+t.m32*m.m22+t.m33*m.m32+t.m34*m.m42,h=t.m31*m.m13+t.m32*m.m23+t.m33*m.m33+t.m34*m.m43,p=t.m31*m.m14+t.m32*m.m24+t.m33*m.m34+t.m34*m.m44,y=t.m41*m.m11+t.m42*m.m21+t.m43*m.m31+t.m44*m.m41,d=t.m41*m.m12+t.m42*m.m22+t.m43*m.m32+t.m44*m.m42,M=t.m41*m.m13+t.m42*m.m23+t.m43*m.m33+t.m44*m.m43,x=t.m41*m.m14+t.m42*m.m24+t.m43*m.m34+t.m44*m.m44;return new r(n,a,c,y,e,u,l,d,i,s,h,M,o,f,p,x)}var r=function(){for(var m=[],t=arguments.length;t--;)m[t]=arguments[t];return this.setIdentity(),m&&m.length&&this.setMatrixValue(m)},n={isIdentity:{configurable:!0},is2D:{configurable:!0}};return r.prototype.setMatrixValue=function(m){var t=this;if(!m||!m.length)return t;if(m.length&&"string"==typeof m[0]&&m[0].length){var n,e,i=String(m[0]).trim();if("none"==i)return t;n=i.slice(0,i.indexOf("(")),e=i.slice("matrix"===n?7:9,-1).split(",").map((function(m){return Math.abs(m)<1e-6?0:+m})),[6,16].indexOf(e.length)>-1?t=t.fromArray(e):console.error("CSSMatrix: expecting valid CSS matrix() / matrix3d() formatted String")}else m[0]instanceof r?t=t.fromMatrix(m[0]):Array.isArray(m[0])?t=t.fromArray(m[0]):Array.isArray(m)&&(t=t.fromArray(m));return t},r.prototype.toString=function(){return(this.is2D?"matrix":"matrix3d")+"("+this.toArray(1).join(",")+")"},r.prototype.toArray=function(m){var t=this;return t.is2D?[t.a,t.b,t.c,t.d,t.e,t.f]:m?[t.m11,t.m12,t.m13,t.m14,t.m21,t.m22,t.m23,t.m24,t.m31,t.m32,t.m33,t.m34,t.m41,t.m42,t.m43,t.m44]:[t.m11,t.m21,t.m31,t.m41,t.m12,t.m22,t.m32,t.m42,t.m13,t.m23,t.m33,t.m43,t.m14,t.m24,t.m34,t.m44]},r.prototype.fromMatrix=function(m){return new r(m.m11,m.m21,m.m31,m.m41,m.m12,m.m22,m.m32,m.m42,m.m13,m.m23,m.m33,m.m43,m.m14,m.m24,m.m34,m.m44)},r.prototype.fromArray=function(m){var t=new r,n=Array.from(m);return 16==n.length?(t.m11=t.a=n[0],t.m21=t.c=n[1],t.m31=n[2],t.m41=t.e=n[3],t.m12=t.b=n[4],t.m22=t.d=n[5],t.m32=n[6],t.m42=t.f=n[7],t.m13=n[8],t.m23=n[9],t.m33=n[10],t.m43=n[11],t.m14=n[12],t.m24=n[13],t.m34=n[14],t.m44=n[15]):6==n.length?(t.m11=t.a=n[0],t.m12=t.b=n[1],t.m14=t.e=n[4],t.m21=t.c=n[2],t.m22=t.d=n[3],t.m24=t.f=n[5]):console.error("CSSMatrix: expecting Array with 6/16 values"),t},r.prototype.multiply=function(m){return t(this,m)},r.prototype.translate=function(m,n,e){return null==e&&(e=0),null==n&&(n=0),t(this,function(m,t,n){var e=new r;return e.m41=e.e=m,e.m42=e.f=t,e.m43=n,e}(m,n,e))},r.prototype.scale=function(m,n,e){return null==n&&(n=m),null==e&&(e=m),t(this,function(m,t,n){var e=new r;return e.m11=e.a=m,e.m22=e.d=t,e.m33=n,e}(m,n,e))},r.prototype.rotate=function(m,n,e){return null==n&&(n=0),null==e&&(e=m,m=0),t(this,function(m,t,n){var e=new r;m*=Math.PI/180,t*=Math.PI/180,n*=Math.PI/180;var i=Math.cos(m),o=-Math.sin(m),a=Math.cos(t),u=-Math.sin(t),s=Math.cos(n),f=-Math.sin(n);return e.m11=e.a=a*s,e.m12=e.b=-a*f,e.m13=u,e.m21=e.c=o*u*s+i*f,e.m22=e.d=i*s-o*u*f,e.m23=-o*a,e.m31=o*f-i*u*s,e.m32=o*s+i*u*f,e.m33=i*a,e}(m,n,e))},r.prototype.rotateAxisAngle=function(r,n,e,i){return 4!==arguments.length?(console.error("CSSMatrix: expecting 4 values"),this):t(this,m(r,n,e,i))},r.prototype.skewX=function(m){return t(this,function(m){m*=Math.PI/180;var t=new r;return t.m21=t.c=Math.tan(m),t}(m))},r.prototype.skewY=function(m){return t(this,function(m){m*=Math.PI/180;var t=new r;return t.m12=t.b=Math.tan(m),t}(m))},n.isIdentity.get=function(){var m=this;return 1==m.m11&&0==m.m12&&0==m.m13&&0==m.m14&&0==m.m21&&1==m.m22&&0==m.m23&&0==m.m24&&0==m.m31&&0==m.m32&&1==m.m33&&0==m.m34&&0==m.m41&&0==m.m42&&0==m.m43&&1==m.m44},n.isIdentity.set=function(m){this.isIdentity=m},n.is2D.get=function(){var m=this;return 0==m.m31&&0==m.m32&&1==m.m33&&0==m.m34&&0==m.m43&&1==m.m44},n.is2D.set=function(m){this.is2D=m},r.prototype.setIdentity=function(){var m=this;return m.m11=m.a=1,m.m12=m.b=0,m.m13=0,m.m14=0,m.m21=m.c=0,m.m22=m.d=1,m.m23=0,m.m24=0,m.m31=0,m.m32=0,m.m33=1,m.m34=0,m.m41=m.e=0,m.m42=m.f=0,m.m43=0,m.m44=1,m},r.prototype.transformPoint=function(m){var t=(new r).translate(m.x,m.y,m.z);return t.m44=m.w||1,{x:(t=this.multiply(t)).m41,y:t.m42,z:t.m43,w:t.m44}},Object.defineProperties(r.prototype,n),r})); |
{ | ||
"name": "dommatrix", | ||
"version": "0.0.3e", | ||
"version": "0.0.3f", | ||
"description": "ES6+ shim for DOMMatrix", | ||
@@ -5,0 +5,0 @@ "main": "dist/dommatrix.min.js", |
@@ -8,2 +8,6 @@ # DOMMatrix shim | ||
* **changed** the order of the initialization parameters of a 3D matrix, now uses the column major order, as decribed in the specification pages; this change is to accomodate outputs of `toFloat64Array()` calls (which also returns items in the expected order); | ||
* **changed** how the constructor determines if the matrix is 2D, based on a [more accurate method](https://github.com/jsidea/jsidea/blob/2b4486c131d5cca2334293936fa13454b34fcdef/ts/jsidea/geom/Matrix3D.ts#L788) which is actually checking the designated values of the 3D space; in contrast, the old *CSSMatrix* constructor sets `afine` property at initialization only and based on the number of arguments or the type of the input CSS transform syntax; also *DOMMatrix* determines `is2D` if you either set a rotation on X or Y axis, or a translation on Z axis or an un-uniform scale, without checking the perspective; | ||
* **fixed** the `translate()`, `scale()` and `rotate()` instance methods to work with one axis transformation, also inline with **DOMMatrix**; | ||
* **changed** `toString()` instance method to work with the new method `toArray()` described below; | ||
* **changed** `setMatrixValue()` instance method to do all the heavy duty work with parameters; | ||
* *removed* `afine` property, it's a very old *WebKitCSSMatrix* defined property; | ||
@@ -13,5 +17,2 @@ * *removed* `inverse()` instance method, will be re-added later for other implementations; | ||
* *removed* `toFullString()` instance method, probably something also from *WebKitCSSMatrix*; | ||
* **fixed** the `translate()`, `scale()` and `rotate()` instance methods to work with one axis transformation, also inline with **DOMMatrix**; | ||
* **changed** `toString()` instance method to work with the new method `toArray()` described below; | ||
* **changed** `setMatrixValue()` instance method to do all the heavy duty work with parameters; | ||
* **added** `is2D` (*getter* and *setter*) property; | ||
@@ -130,3 +131,3 @@ * **added** `isIdentity` (*getter* and *setter*) property; | ||
The `angle` parameters sets the amount in degrees to skew. | ||
The `angle` parameter sets the amount in degrees to skew. | ||
@@ -138,3 +139,3 @@ | ||
The `angle` parameters sets the amount in degrees to skew. | ||
The `angle` parameter sets the amount in degrees to skew. | ||
@@ -190,3 +191,3 @@ | ||
**toArray()** | ||
**toArray(transposed)** | ||
@@ -202,6 +203,4 @@ Returns an *Array* containing all 16 elements which comprise the 3D matrix. The method can return either the elements in default column major order or row major order (what we call the *transposed* matrix, used by `toString`). | ||
**toFloat64Array()** and **toFloat32Array()** | ||
There are also *toFloat64Array()* and **toFloat32Array()* which return a new `Float64Array` / `toFloat32Array` containing all 6/16 elements which comprise the matrix. The elements are stored into the array as double-precision floating-point numbers (`Float64Array`) or single-precision floating-point numbers (`Float32Array`), in column-major (colexographical access access or "colex") order. Both these methods utilize the above described method. | ||
Both return a new `Float64Array` / `toFloat32Array` containing all 6/16 elements which comprise the matrix. The elements are stored into the array as double-precision floating-point numbers (`Float64Array`) or single-precision floating-point numbers (`Float32Array`), in column-major (colexographical access access or "colex") order. Both these methods utilize the above described method. | ||
The result can be immediatelly fed as parameter for the initialization of a new matrix. | ||
@@ -215,11 +214,11 @@ | ||
**fromArray(array)**, **fromFloat64Array(array)** and **fromFloat32Array(array)** | ||
**fromArray(array)** | ||
Each of these methods create a new mutable `CSSMatrix` object given an array of values. The `fromFloat64Array` and `fromFloat32Array` are only aliases for `fromArray` for now, but will be updated accordingly later if required. | ||
Creates a new mutable `CSSMatrix` object given an array of values. If the array has six values, the result is a 2D matrix; if the array has 16 values, the result is a 3D matrix. Otherwise, a `console.error` is thrown and returns the current matrix. | ||
If the array has six values, the result is a 2D matrix; if the array has 16 values, the result is a 3D matrix. Otherwise, a `console.error` is thrown and returns the current matrix. | ||
The `array` parameter is the source to feed the values for the new matrix. | ||
There are two more methods *fromFloat64Array(array)* and *fromFloat32Array(array)* which are only aliases for `fromArray` for now, but will be updated accordingly once DOMMatrix API is final. | ||
# Getters and Setters | ||
@@ -226,0 +225,0 @@ |
583
src/index.js
@@ -1,594 +0,19 @@ | ||
const INVALID_MATRIX_VALUE = 'CSSMatrix: ' | ||
import CSSMatrix from './constructor/DOMMatrix.js' | ||
import functions from './functions/functions.js' | ||
// Transform Functions | ||
// https://www.w3.org/TR/css-transforms-1/#transform-functions | ||
// =================== | ||
for (let f in functions) CSSMatrix[f] = functions[f] | ||
/** | ||
* Creates a new `CSSMatrix` for the rotation matrix and returns it. | ||
* | ||
* http://en.wikipedia.org/wiki/Rotation_matrix | ||
* | ||
* @param {Number} rx the `x-axis` rotation. | ||
* @param {Number} ry the `y-axis` rotation. | ||
* @param {Number} rz the `z-axis` rotation. | ||
*/ | ||
export default CSSMatrix | ||
function Rotate(rx, ry, rz){ | ||
let m = new CSSMatrix() | ||
rx *= Math.PI / 180 | ||
ry *= Math.PI / 180 | ||
rz *= Math.PI / 180 | ||
// minus sin() because of right-handed system | ||
const cosx = Math.cos(rx), sinx = -Math.sin(rx), | ||
cosy = Math.cos(ry), siny = -Math.sin(ry), | ||
cosz = Math.cos(rz), sinz = -Math.sin(rz); | ||
m.m11 = m.a = cosy * cosz | ||
m.m12 = m.b = -cosy * sinz | ||
m.m13 = siny | ||
m.m21 = m.c = sinx * siny * cosz + cosx * sinz | ||
m.m22 = m.d = cosx * cosz - sinx * siny * sinz | ||
m.m23 = -sinx * cosy | ||
m.m31 = sinx * sinz - cosx * siny * cosz | ||
m.m32 = sinx * cosz + cosx * siny * sinz | ||
m.m33 = cosx * cosy | ||
return m | ||
} | ||
/** | ||
* Creates a new `CSSMatrix` for the rotation matrix and returns it. | ||
* This method is equivalent to the CSS `rotate3d()` function. | ||
* | ||
* https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/rotate3d | ||
* | ||
* @param {Number} x the `x-axis` vector length. | ||
* @param {Number} y the `y-axis` vector length. | ||
* @param {Number} z the `z-axis` vector length. | ||
* @param {Number} angle the value in degrees of the rotation. | ||
*/ | ||
function RotateAxisAngle(x, y, z, angle){ | ||
angle *= Math.PI / 360; | ||
const sinA = Math.sin(angle), | ||
cosA = Math.cos(angle), | ||
sinA2 = sinA * sinA, | ||
length = Math.sqrt(x * x + y * y + z * z); | ||
if (length === 0){ | ||
// bad vector length, use something reasonable | ||
x = 0; | ||
y = 0; | ||
z = 1; | ||
} else { | ||
x /= length; | ||
y /= length; | ||
z /= length; | ||
} | ||
const x2 = x * x, y2 = y * y, z2 = z * z; | ||
let m = new CSSMatrix(); | ||
m.m11 = m.a = 1 - 2 * (y2 + z2) * sinA2; | ||
m.m12 = m.b = 2 * (x * y * sinA2 + z * sinA * cosA); | ||
m.m13 = 2 * (x * z * sinA2 - y * sinA * cosA); | ||
m.m21 = m.c = 2 * (y * x * sinA2 - z * sinA * cosA); | ||
m.m22 = m.d = 1 - 2 * (z2 + x2) * sinA2; | ||
m.m23 = 2 * (y * z * sinA2 + x * sinA * cosA); | ||
m.m31 = 2 * (z * x * sinA2 + y * sinA * cosA); | ||
m.m32 = 2 * (z * y * sinA2 - x * sinA * cosA); | ||
m.m33 = 1 - 2 * (x2 + y2) * sinA2; | ||
m.m14 = m.m24 = m.m34 = 0; | ||
m.m41 = m.e = m.m42 = m.f = m.m43 = 0; | ||
m.m44 = 1; | ||
return m | ||
} | ||
/** | ||
* Creates a new `CSSMatrix` for the scale matrix and returns it. | ||
* This method is equivalent to the CSS `scale3d()` function. | ||
* | ||
* https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/scale3d | ||
* | ||
* @param {Number} x the `x-axis` scale. | ||
* @param {Number} y the `y-axis` scale. | ||
* @param {Number} z the `z-axis` scale. | ||
*/ | ||
function Scale(x, y, z){ | ||
let m = new CSSMatrix(); | ||
m.m11 = m.a = x; | ||
m.m22 = m.d = y; | ||
m.m33 = z; | ||
return m | ||
} | ||
/** | ||
* Creates a new `CSSMatrix` for the shear of the `x-axis` rotation matrix and | ||
* returns it. This method is equivalent to the CSS `skewX()` function. | ||
* | ||
* https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/skewX | ||
* | ||
* @param {Number} angle the angle in degrees. | ||
*/ | ||
function SkewX(angle){ | ||
angle *= Math.PI / 180; | ||
let m = new CSSMatrix(); | ||
m.m21 = m.c = Math.tan(angle); | ||
return m | ||
} | ||
/** | ||
* Creates a new `CSSMatrix` for the shear of the `y-axis` rotation matrix and | ||
* returns it. This method is equivalent to the CSS `skewY()` function. | ||
* | ||
* https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/skewY | ||
* | ||
* @param {Number} angle the angle in degrees. | ||
*/ | ||
function SkewY(angle){ | ||
angle *= Math.PI / 180; | ||
let m = new CSSMatrix(); | ||
m.m12 = m.b = Math.tan(angle); | ||
return m | ||
} | ||
/** | ||
* Creates a new `CSSMatrix` for the translation matrix and returns it. | ||
* This method is equivalent to the CSS `translate3d()` function. | ||
* | ||
* https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/translate3d | ||
* | ||
* @param {Number} x the `x-axis` position. | ||
* @param {Number} y the `y-axis` position. | ||
* @param {Number} z the `z-axis` position. | ||
*/ | ||
function Translate(x, y, z){ | ||
let m = new CSSMatrix(); | ||
m.m41 = m.e = x; | ||
m.m42 = m.f = y; | ||
m.m43 = z; | ||
return m | ||
} | ||
/** | ||
* Creates a new `CSSMatrix` resulted from the multiplication of two matrixes | ||
* and returns it. Both matrixes are not changed. | ||
* | ||
* @param {CSSMatrix} m1 the first matrix. | ||
* @param {CSSMatrix} m2 the second matrix. | ||
*/ | ||
function Multiply(m1, m2){ | ||
if (m2 == null) { | ||
console.error(`${INVALID_MATRIX_VALUE}expecting 2 parameters`) | ||
return m1 | ||
} | ||
let m11 = m2.m11 * m1.m11 + m2.m12 * m1.m21 + m2.m13 * m1.m31 + m2.m14 * m1.m41, | ||
m12 = m2.m11 * m1.m12 + m2.m12 * m1.m22 + m2.m13 * m1.m32 + m2.m14 * m1.m42, | ||
m13 = m2.m11 * m1.m13 + m2.m12 * m1.m23 + m2.m13 * m1.m33 + m2.m14 * m1.m43, | ||
m14 = m2.m11 * m1.m14 + m2.m12 * m1.m24 + m2.m13 * m1.m34 + m2.m14 * m1.m44, | ||
m21 = m2.m21 * m1.m11 + m2.m22 * m1.m21 + m2.m23 * m1.m31 + m2.m24 * m1.m41, | ||
m22 = m2.m21 * m1.m12 + m2.m22 * m1.m22 + m2.m23 * m1.m32 + m2.m24 * m1.m42, | ||
m23 = m2.m21 * m1.m13 + m2.m22 * m1.m23 + m2.m23 * m1.m33 + m2.m24 * m1.m43, | ||
m24 = m2.m21 * m1.m14 + m2.m22 * m1.m24 + m2.m23 * m1.m34 + m2.m24 * m1.m44, | ||
m31 = m2.m31 * m1.m11 + m2.m32 * m1.m21 + m2.m33 * m1.m31 + m2.m34 * m1.m41, | ||
m32 = m2.m31 * m1.m12 + m2.m32 * m1.m22 + m2.m33 * m1.m32 + m2.m34 * m1.m42, | ||
m33 = m2.m31 * m1.m13 + m2.m32 * m1.m23 + m2.m33 * m1.m33 + m2.m34 * m1.m43, | ||
m34 = m2.m31 * m1.m14 + m2.m32 * m1.m24 + m2.m33 * m1.m34 + m2.m34 * m1.m44, | ||
m41 = m2.m41 * m1.m11 + m2.m42 * m1.m21 + m2.m43 * m1.m31 + m2.m44 * m1.m41, | ||
m42 = m2.m41 * m1.m12 + m2.m42 * m1.m22 + m2.m43 * m1.m32 + m2.m44 * m1.m42, | ||
m43 = m2.m41 * m1.m13 + m2.m42 * m1.m23 + m2.m43 * m1.m33 + m2.m44 * m1.m43, | ||
m44 = m2.m41 * m1.m14 + m2.m42 * m1.m24 + m2.m43 * m1.m34 + m2.m44 * m1.m44 | ||
return new CSSMatrix( | ||
m11, m21, m31, m41, | ||
m12, m22, m32, m42, | ||
m13, m23, m33, m43, | ||
m14, m24, m34, m44 | ||
) | ||
} | ||
/** | ||
* Creates and returns a new `DOMMatrix` compatible *Object* | ||
* with equivalent instance methods. | ||
* | ||
* https://developer.mozilla.org/en-US/docs/Web/API/DOMMatrix | ||
* https://github.com/thednp/DOMMatrix/ | ||
* | ||
* @param {String} String valid CSS transform in `matrix()`/`matrix3d()` format | ||
* @param {Array} Array expected to be *Float64Array* or *Float32Array* in the correct column major order described in the specification. | ||
* @param {[a,b,c,d,e,f]} Arguments representing the 6 elements of a 2d matrix | ||
* @param {[m11,m21,m31,m41,m12,m22,m32,m42,m13,m23,m33,m43,m14,m24,m34,m44]} Arguments representing the 16 elements of a 3d matrix | ||
*/ | ||
export default class CSSMatrix { | ||
constructor(...args){ | ||
this.setIdentity() | ||
return args && args.length && this.setMatrixValue(args) | ||
} | ||
/** | ||
* The `setMatrixValue` method replaces the existing matrix with one computed | ||
* in the browser. EG: `matrix(1,0.25,-0.25,1,0,0)` | ||
* | ||
* The method accepts *Float64Array* / *Float32Array* / any *Array* values, the result of | ||
* `DOMMatrix` / `CSSMatrix` instance method calls `toFloat64Array()` / `toFloat32Array()`. | ||
* | ||
* This method expects valid *matrix()* / *matrix3d()* string values, other | ||
* transform functions like *translate()* are not supported. | ||
* | ||
* @param {String} source the *String* resulted from `getComputedStyle()`. | ||
* @param {Array} source the *Array* resulted from `toFloat64Array()`. | ||
*/ | ||
setMatrixValue(source){ | ||
let m = this | ||
if (!source || !source.length) { // no parameters or source | ||
return m | ||
} else if (source.length && typeof source[0] === 'string' && source[0].length) { // CSS transform String source | ||
let string = String(source[0]).trim(), type = '', values = []; | ||
if (string == 'none') return m; | ||
type = string.slice(0, string.indexOf('(')) | ||
values = string.slice((type === 'matrix' ? 7 : 9), -1).split(',') | ||
.map(n=>Math.abs(n) < 1e-6 ? 0 : +n) | ||
if ([6,16].indexOf(values.length)>-1){ | ||
m = m.fromArray(values) | ||
} else { | ||
console.error(`${INVALID_MATRIX_VALUE}expecting valid CSS matrix() / matrix3d() formatted String`) | ||
} | ||
} else if (source[0] instanceof CSSMatrix) { // CSSMatrix instance | ||
m = m.fromMatrix(source[0]) | ||
} else if (Array.isArray(source[0])) { // Float32Array,Float64Array source | ||
m = m.fromArray(source[0]) | ||
} else if (Array.isArray(source)) { // Arguments list come here | ||
m = m.fromArray(source) | ||
} | ||
return m | ||
} | ||
/** | ||
* Creates and returns a string representation of the matrix in `CSS` matrix syntax, | ||
* using the appropriate `CSS` matrix notation. | ||
* | ||
* The 16 items in the array 3D matrix array are *transposed* in row-major order. | ||
* | ||
* @matrix3d *matrix3d(m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44)* | ||
* @matrix *matrix(a, b, c, d, e, f)* | ||
* | ||
* @return {String} `String` representation of the matrix | ||
*/ | ||
toString(){ | ||
const m = this, type = m.is2D ? 'matrix' : 'matrix3d' | ||
return `${type}(${m.toArray(1).join(',')})` | ||
} | ||
/** | ||
* Returns an *Array* containing all 16 elements which comprise the matrix. | ||
* The method can return either the elements in default column major order or | ||
* row major order (what we call the *transposed* matrix, used by `toString`). | ||
* | ||
* Other methods make use of this method to feed their output values from this matrix. | ||
* | ||
* @param {Boolean} transposed changes the order of elements in the output | ||
* @return {Array} an *Array* representation of the matrix | ||
*/ | ||
toArray(transposed){ | ||
let m = this | ||
return m.is2D ? [ m.a, m.b, m.c, m.d, m.e, m.f ] | ||
: transposed | ||
?[m.m11, m.m12, m.m13, m.m14, // transposed is used by toString | ||
m.m21, m.m22, m.m23, m.m24, | ||
m.m31, m.m32, m.m33, m.m34, | ||
m.m41, m.m42, m.m43, m.m44] | ||
:[m.m11, m.m21, m.m31, m.m41, // used by CSSMatrix and all other methods | ||
m.m12, m.m22, m.m32, m.m42, | ||
m.m13, m.m23, m.m33, m.m43, | ||
m.m14, m.m24, m.m34, m.m44] | ||
} | ||
/** | ||
* Returns a new Float32Array containing all 16 elements which comprise the matrix. | ||
* The elements are stored into the array as single-precision floating-point numbers | ||
* in column-major (colexographical access access or "colex") order. | ||
* | ||
* @return {Float32Array} matrix elements (m11, m21, m31, m41, m12, m22, m32, m42, m13, m23, m33, m43, m14, m24, m34, m44) | ||
*/ | ||
// toFloat32Array(){ | ||
// return Float32Array.from(this.toArray()) | ||
// } | ||
/** | ||
* Returns a new Float64Array containing all 16 elements which comprise the matrix. | ||
* The elements are stored into the array as double-precision floating-point numbers | ||
* in column-major (colexographical access access or "colex") order. | ||
* | ||
* @return {Float64Array} matrix elements (m11, m21, m31, m41, m12, m22, m32, m42, m13, m23, m33, m43, m14, m24, m34, m44) | ||
*/ | ||
// toFloat64Array(){ | ||
// return Float64Array.from(this.toArray()) | ||
// } | ||
/** | ||
* Creates a new mutable `CSSMatrix` object given an existing matrix or a | ||
* `DOMMatrix` *Object* which provides the values for its properties. | ||
* | ||
* @param {CSSMatrix} CSSMatrix the source `CSSMatrix` / `DOMMatrix` initialization to feed values from | ||
*/ | ||
fromMatrix(m2){ | ||
return new CSSMatrix( | ||
// DOMMatrix elements order | ||
m2.m11, m2.m21, m2.m31, m2.m41, | ||
m2.m12, m2.m22, m2.m32, m2.m42, | ||
m2.m13, m2.m23, m2.m33, m2.m43, | ||
m2.m14, m2.m24, m2.m34, m2.m44) | ||
} | ||
/** | ||
* Creates a new mutable `CSSMatrix` object given an array of no precision, single/double-precision | ||
* (32/64 bit) floating-point values. | ||
* | ||
* If the array has six values, the result is a 2D matrix; if the array has 16 values, | ||
* the result is a 3D matrix. Otherwise, a TypeError exception is thrown. | ||
* | ||
* @param {Array} array The source `Array` to feed values from. | ||
* @param {Float32Array} array The source `Float32Array` to feed values from. | ||
* @param {Float64Array} array The source `Float64Array` to feed values from. | ||
* @return {CSSMatrix} a The source array to feed values from. | ||
*/ | ||
fromArray(array){ | ||
let m = new CSSMatrix(), a = Array.from(array) | ||
if (a.length == 16){ | ||
m.m11 = m.a = a[0]; m.m21 = m.c = a[1]; | ||
m.m31 = a[2]; m.m41 = m.e = a[3]; | ||
m.m12 = m.b = a[4]; m.m22 = m.d = a[5]; | ||
m.m32 = a[6]; m.m42 = m.f = a[7]; | ||
m.m13 = a[8]; m.m23 = a[9]; | ||
m.m33 = a[10]; m.m43 = a[11]; | ||
m.m14 = a[12]; m.m24 = a[13]; | ||
m.m34 = a[14]; m.m44 = a[15]; | ||
} else if (a.length == 6) { | ||
m.m11 = m.a = a[0]; | ||
m.m12 = m.b = a[1]; | ||
m.m14 = m.e = a[4]; | ||
m.m21 = m.c = a[2]; | ||
m.m22 = m.d = a[3]; | ||
m.m24 = m.f = a[5]; | ||
} else { | ||
console.error(`${INVALID_MATRIX_VALUE}expecting Array with 6/16 values`) | ||
} | ||
return m | ||
} | ||
// more of an alias for now, will update later if it's the case | ||
// fromFloat32Array(a){ | ||
// return this.fromArray(a) | ||
// } | ||
// fromFloat64Array(a){ // more of an alias | ||
// return this.fromArray(a) | ||
// } | ||
/** | ||
* The Multiply method returns a new CSSMatrix which is the result of this | ||
* matrix multiplied by the passed matrix, with the passed matrix to the right. | ||
* This matrix is not modified. | ||
* | ||
* @param {CSSMatrix} m2 CSSMatrix | ||
* @return {CSSMatrix} The result matrix. | ||
*/ | ||
multiply(m2){ | ||
return Multiply(this,m2) | ||
} | ||
/** | ||
* | ||
* These methods will be implemented later into an extended version to provide | ||
* additional functionality. | ||
*/ | ||
// inverse = function(){} | ||
// determinant = function(){} | ||
// transpose = function(){} | ||
/** | ||
* The translate method returns a new matrix which is this matrix post | ||
* multiplied by a translation matrix containing the passed values. If the z | ||
* component is undefined, a 0 value is used in its place. This matrix is not | ||
* modified. | ||
* | ||
* @param {number} x X component of the translation value. | ||
* @param {number} y Y component of the translation value. | ||
* @param {number=} z Z component of the translation value. | ||
* @return {CSSMatrix} The result matrix | ||
*/ | ||
translate(x, y, z){ | ||
if (z == null) z = 0 | ||
if (y == null) y = 0 | ||
return Multiply(this,Translate(x, y, z)) | ||
} | ||
/** | ||
* The scale method returns a new matrix which is this matrix post multiplied by | ||
* a scale matrix containing the passed values. If the z component is undefined, | ||
* a 1 value is used in its place. If the y component is undefined, the x | ||
* component value is used in its place. This matrix is not modified. | ||
* | ||
* @param {number} x The X component of the scale value. | ||
* @param {number=} y The Y component of the scale value. | ||
* @param {number=} z The Z component of the scale value. | ||
* @return {CSSMatrix} The result matrix | ||
*/ | ||
scale(x, y, z){ | ||
if (y == null) y = x; | ||
if (z == null) z = x; | ||
return Multiply(this,Scale(x, y, z)) | ||
} | ||
/** | ||
* The rotate method returns a new matrix which is this matrix post multiplied | ||
* by each of 3 rotation matrices about the major axes, first X, then Y, then Z. | ||
* If the y and z components are undefined, the x value is used to rotate the | ||
* object about the z axis, as though the vector (0,0,x) were passed. All | ||
* rotation values are in degrees. This matrix is not modified. | ||
* | ||
* @param {number} rx The X component of the rotation value, or the Z component if the rotateY and rotateZ parameters are undefined. | ||
* @param {number=} ry The (optional) Y component of the rotation value. | ||
* @param {number=} rz The (optional) Z component of the rotation value. | ||
* @return {CSSMatrix} The result matrix | ||
*/ | ||
rotate(rx, ry, rz){ | ||
if (ry == null) ry = 0; | ||
if (rz == null) {rz = rx; rx = 0} | ||
return Multiply(this,Rotate(rx, ry, rz)) | ||
} | ||
/** | ||
* The rotateAxisAngle method returns a new matrix which is this matrix post | ||
* multiplied by a rotation matrix with the given axis and `angle`. The right-hand | ||
* rule is used to determine the direction of rotation. All rotation values are | ||
* in degrees. This matrix is not modified. | ||
* | ||
* @param {number} x The X component of the axis vector. | ||
* @param {number} y The Y component of the axis vector. | ||
* @param {number} z The Z component of the axis vector. | ||
* @param {number} angle The angle of rotation about the axis vector, in degrees. | ||
* @return {CSSMatrix} The `CSSMatrix` result | ||
*/ | ||
rotateAxisAngle(x, y, z, angle){ | ||
if (arguments.length!==4){ | ||
console.error(`${INVALID_MATRIX_VALUE}expecting 4 values`) | ||
return this | ||
} | ||
return Multiply(this,RotateAxisAngle(x, y, z, angle)) | ||
} | ||
/** | ||
* Specifies a skew transformation along the `x-axis` by the given angle. | ||
* This matrix is not modified. | ||
* | ||
* @param {number} angle The angle amount in degrees to skew. | ||
* @return {CSSMatrix} The `CSSMatrix` result | ||
*/ | ||
skewX(angle){ | ||
return Multiply(this,SkewX(angle)) | ||
} | ||
/** | ||
* Specifies a skew transformation along the `y-axis` by the given angle. | ||
* This matrix is not modified. | ||
* | ||
* @param {number} angle The angle amount in degrees to skew. | ||
* @return {CSSMatrix} The `CSSMatrix` result | ||
*/ | ||
skewY(angle){ | ||
return Multiply(this,SkewY(angle)) | ||
} | ||
/** | ||
* A `Boolean` whose value is `true` if the matrix is the identity matrix. The identity | ||
* matrix is one in which every value is 0 except those on the main diagonal from top-left | ||
* to bottom-right corner (in other words, where the offsets in each direction are equal). | ||
* | ||
* @return {Boolean} `Boolean` the current property value | ||
*/ | ||
get isIdentity(){ | ||
let m = this; | ||
return (m.m11 == 1 && m.m12 == 0 && m.m13 == 0 && m.m14 == 0 && | ||
m.m21 == 0 && m.m22 == 1 && m.m23 == 0 && m.m24 == 0 && | ||
m.m31 == 0 && m.m32 == 0 && m.m33 == 1 && m.m34 == 0 && | ||
m.m41 == 0 && m.m42 == 0 && m.m43 == 0 && m.m44 == 1) | ||
} | ||
/** | ||
* Sets a new `Boolean` flag value for `this.isIdentity` matrix property. | ||
* | ||
* @param {Boolean} value sets a new `Boolean` flag for this property | ||
*/ | ||
set isIdentity(value){ | ||
this.isIdentity = value | ||
} | ||
/** | ||
* A `Boolean` flag whose value is `true` if the matrix was initialized as a 2D matrix | ||
* and `false` if the matrix is 3D. | ||
* | ||
* @return {Boolean} `Boolean` the current property value | ||
*/ | ||
get is2D(){ | ||
let m = this; | ||
return (m.m31 == 0 && m.m32 == 0 && m.m33 == 1 && m.m34 == 0 && m.m43 == 0 && m.m44 == 1) | ||
} | ||
/** | ||
* Sets a new `Boolean` flag value for `this.is2D` matrix property. | ||
* | ||
* @param {Boolean} value sets a new `Boolean` flag for this property | ||
*/ | ||
set is2D(value){ | ||
this.is2D = value | ||
} | ||
/** | ||
* Set the current `CSSMatrix` instance to the identity form and returns it. | ||
* | ||
* @return {CSSMatrix} this `CSSMatrix` instance | ||
*/ | ||
setIdentity(){ | ||
let m = this | ||
m.m11 = m.a = 1; | ||
m.m12 = m.b = 0; | ||
m.m13 = 0; m.m14 = 0 | ||
m.m21 = m.c = 0; | ||
m.m22 = m.d = 1; | ||
m.m23 = 0; m.m24 = 0 | ||
m.m31 = 0; m.m32 = 0; | ||
m.m33 = 1; m.m34 = 0 | ||
m.m41 = m.e = 0; | ||
m.m42 = m.f = 0; | ||
m.m43 = 0; m.m44 = 1 | ||
return m | ||
} | ||
/** | ||
* Transforms the specified point using the matrix, returning a new | ||
* `DOMPoint` like *Object* containing the transformed point. | ||
* Neither the matrix nor the original point are altered. | ||
* | ||
* The method is equivalent with `transformPoint()` method | ||
* of the `DOMMatrix` constructor. | ||
* | ||
* JavaScript implementation by thednp | ||
* | ||
* @param {Tuple} vector the *Object* with `x`, `y`, `z` and `w` properties | ||
* @return {Tuple} a new `{x,y,z,w}` *Object* | ||
*/ | ||
transformPoint(v){ | ||
let _m = this, m = new CSSMatrix().translate(v.x, v.y, v.z) | ||
m.m44 = v.w || 1 | ||
m = _m.multiply(m) | ||
return { | ||
x: m.m41, | ||
y: m.m42, | ||
z: m.m43, | ||
w: m.m44 | ||
} | ||
} | ||
} |
License Policy Violation
LicenseThis package is not allowed per your license policy. Review the package's license to ensure compliance.
Found 1 instance in 1 package
Manifest confusion
Supply chain riskThis package has inconsistent metadata. This could be malicious or caused by an error when publishing the package.
Found 1 instance in 1 package
License Policy Violation
LicenseThis package is not allowed per your license policy. Review the package's license to ensure compliance.
Found 1 instance in 1 package
Major refactor
Supply chain riskPackage has recently undergone a major refactor. It may be unstable or indicate significant internal changes. Use caution when updating to versions that include significant changes.
Found 1 instance in 1 package
Manifest confusion
Supply chain riskThis package has inconsistent metadata. This could be malicious or caused by an error when publishing the package.
Found 1 instance in 1 package
12
1
43665
607
233