Firebase Genkit <> OpenAI Plugin
genkitx-openai
is a community plugin for using OpenAI APIs with
Firebase Genkit. Built by The Fire Company. 🔥
This Genkit plugin allows to use OpenAI models through their official APIs.
Supported models
The plugin supports several OpenAI models:
- GPT-4o, GPT-4 with all its variants (Turbo, Vision), and GPT-3.5 Turbo for text generation;
- DALL-E 3 for image generation;
- Text Embedding Small, Text Embedding Large, and Ada for text embedding generation;
- Whisper for speech recognition;
- Text-to-speech 1 and Text-to-speech 1 HD for speech synthesis.
Installation
Install the plugin in your project with your favorite package manager:
npm install genkitx-openai
yarn add genkitx-openai
pnpm add genkitx-openai
Usage
Initialize
import dotenv from 'dotenv';
import { genkit } from 'genkit';
import openAI, { gpt35Turbo } from 'genkitx-openai';
dotenv.config();
const ai = genkit({
plugins: [openAI({ apiKey: process.env.OPENAI_API_KEY })],
model: gpt35Turbo,
});
Basic examples
The simplest way to generate text is by using the generate
method:
const response = await ai.generate({
model: gpt4o
prompt: 'Tell me a joke.',
});
console.log(response.text);
Multi-modal prompt
const response = await ai.generate({
model: gpt4o,
prompt: [
{ text: 'What animal is in the photo?' },
{ media: { url: imageUrl } },
],
config: {
visualDetailLevel: 'low',
},
});
console.log(response.text);
Text Embeddings
import { textEmbeddingAda002 } from 'genkitx-openai';
const embedding = await ai.embed({
embedder: textEmbeddingAda002,
content: 'Hello world',
});
console.log(embedding);
Within a flow
import { z } from 'genkit';
export const jokeFlow = ai.defineFlow(
{
name: 'jokeFlow',
inputSchema: z.string(),
outputSchema: z.string(),
},
async (subject) => {
const llmResponse = await ai.generate({
prompt: `tell me a joke about ${subject}`,
});
return llmResponse.text;
}
);
Tool use
import { z } from 'genkit';
const createReminder = ai.defineTool(
{
name: 'createReminder',
description: 'Use this to create reminders for things in the future',
inputSchema: z.object({
time: z
.string()
.describe('ISO timestamp string, e.g. 2024-04-03T12:23:00Z'),
reminder: z.string().describe('the content of the reminder'),
}),
outputSchema: z.number().describe('the ID of the created reminder'),
},
(reminder) => Promise.resolve(3)
);
const result = await ai.generate({
tools: [createReminder],
prompt: `
You are a reminder assistant.
If you create a reminder, describe in text the reminder you created as a response.
Query: I have a meeting with Anna at 3 for dinner - can you set a reminder for the time?
`,
});
console.log(result.text);
For more detailed examples and the explanation of other functionalities, refer to the examples in the official Github repo of the plugin or in the official Genkit documentation.
Contributing
Want to contribute to the project? That's awesome! Head over to our Contribution Guidelines.
Need support?
[!NOTE]
This repository depends on Google's Firebase Genkit. For issues and questions related to Genkit, please refer to instructions available in Genkit's repository.
Reach out by opening a discussion on Github Discussions.
Credits
This plugin is proudly maintained by the team at The Fire Company. 🔥
License
This project is licensed under the Apache 2.0 License.