New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

gpt-tokenizer

Package Overview
Dependencies
Maintainers
1
Versions
27
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

gpt-tokenizer

BPE Encoder Decoder for GPT-2 / GPT-3

  • 2.0.0-beta.1
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
184K
decreased by-12.39%
Maintainers
1
Weekly downloads
 
Created
Source

gpt-tokenizer

Play with gpt-tokenizer

gpt-tokenizer is a highly optimized Token Byte Pair Encoder/Decoder for all OpenAI's models (including those used by GPT-2, GPT-3, GPT-3.5 and GPT-4), written in TypeScript. OpenAI's GPT models utilize byte pair encoding to transform text into a sequence of integers before feeding them into the model.

This package started off as a fork of latitudegames/GPT-3-Encoder, but then in version 2.0 was rewritten from scratch by porting @dmitry-brazhenko's SharpToken, and adding additional features.

As of 2023, it is the most feature-complete, open-source GPT tokenizer on NPM. It implements some unique features, such as:

  • Support for all current OpenAI models (available encodings: r50k_base, p50k_base, p50k_edit and cl100k_base)
  • Generator function versions of both the decoder and encoder
  • Provides the ability to decode an asynchronous stream of data (using decodeAsyncGenerator and decodeGenerator with any iterable input)
  • No global cache (no accidental memory leaks, as with the original GPT-3-Encoder implementation)
  • Includes a highly performant isWithinTokenLimit function to assess token limit without encoding the entire text
  • Improves overall performance by eliminating transitive arrays
  • Adds type-checking
  • Works in the browser out-of-the-box

Installation

As NPM package:

npm install gpt-tokenizer

As an UMD module:

<script src="https://unpkg.com/gpt-tokenizer" />

Playground

You can play with the package in the browser using the Playground.

GPT Tokenizer Playground

The playground mimics the official OpenAI Tokenizer.

Usage

import {
  encode,
  decode,
  isWithinTokenLimit,
  encodeGenerator,
  decodeGenerator,
  decodeAsyncGenerator,
} from 'gpt-tokenizer'

const text = 'Hello, world!'
const tokenLimit = 10

// Encode text into tokens
const tokens = encode(text)

// Decode tokens back into text
const decodedText = decode(tokens)

// Check if text is within the token limit
// returns false if the limit is exceeded, otherwise returns the actual number of tokens (truthy value)
const withinTokenLimit = isWithinTokenLimit(text, tokenLimit)

// Encode text using generator
for (const tokenChunk of encodeGenerator(text)) {
  console.log(tokenChunk)
}

// Decode tokens using generator
for (const textChunk of decodeGenerator(tokens)) {
  console.log(textChunk)
}

// Decode tokens using async generator
// (assuming `asyncTokens` is an AsyncIterableIterator<number>)
for await (const textChunk of decodeAsyncGenerator(asyncTokens)) {
  console.log(textChunk)
}

By default, importing from 'gpt-tokenizer' uses cl100k_base encoding, used by GPT-3.5 and GPT-4.

To get a tokenizer for a different model, import it directly, for example:

import {
  encode,
  decode,
  isWithinTokenLimit,
} from 'gpt-tokenizer/model/text-davinci-003'

Supported models and their encodings:

chat:

  • gpt-4 (cl100k_base)
  • gpt-3.5-turbo (cl100k_base)

text:

  • text-davinci-003 (p50k_base)
  • text-davinci-002 (p50k_base)
  • text-davinci-001 (r50k_base)
  • text-curie-001 (r50k_base)
  • text-babbage-001 (r50k_base)
  • text-ada-001 (r50k_base)
  • davinci (r50k_base)
  • curie (r50k_base)
  • babbage (r50k_base)
  • ada (r50k_base)

code:

  • code-davinci-002 (p50k_base)
  • code-davinci-001 (p50k_base)
  • code-cushman-002 (p50k_base)
  • code-cushman-001 (p50k_base)
  • davinci-codex (p50k_base)
  • cushman-codex (p50k_base)

edit:

  • text-davinci-edit-001 (p50k_edit)
  • code-davinci-edit-001 (p50k_edit)

embeddings:

  • text-embedding-ada-002 (cl100k_base)

old embeddings:

  • text-similarity-davinci-001 (r50k_base)
  • text-similarity-curie-001 (r50k_base)
  • text-similarity-babbage-001 (r50k_base)
  • text-similarity-ada-001 (r50k_base)
  • text-search-davinci-doc-001 (r50k_base)
  • text-search-curie-doc-001 (r50k_base)
  • text-search-babbage-doc-001 (r50k_base)
  • text-search-ada-doc-001 (r50k_base)
  • code-search-babbage-code-001 (r50k_base)
  • code-search-ada-code-001 (r50k_base)

API

encode(text: string): number[]

Encodes the given text into a sequence of tokens. Use this method when you need to transform a piece of text into the token format that GPT-2 or GPT-3 models can process.

Example:

import { encode } from 'gpt-tokenizer'

const text = 'Hello, world!'
const tokens = encode(text)

decode(tokens: number[]): string

Decodes a sequence of tokens back into text. Use this method when you want to convert the output tokens from GPT-2 or GPT-3 models back into human-readable text.

Example:

import { decode } from 'gpt-tokenizer'

const tokens = [18435, 198, 23132, 328]
const text = decode(tokens)

isWithinTokenLimit(text: string, tokenLimit: number): false | number

Checks if the text is within the token limit. Returns false if the limit is exceeded, otherwise returns the number of tokens. Use this method to quickly check if a given text is within the token limit imposed by GPT-2 or GPT-3 models, without encoding the entire text.

Example:

import { isWithinTokenLimit } from 'gpt-tokenizer'

const text = 'Hello, world!'
const tokenLimit = 10
const withinTokenLimit = isWithinTokenLimit(text, tokenLimit)

encodeGenerator(text: string): Generator<number[], void, undefined>

Encodes the given text using a generator, yielding chunks of tokens. Use this method when you want to encode text in chunks, which can be useful for processing large texts or streaming data.

Example:

import { encodeGenerator } from 'gpt-tokenizer'

const text = 'Hello, world!'
const tokens = []
for (const tokenChunk of encodeGenerator(text)) {
  tokens.push(...tokenChunk)
}

decodeGenerator(tokens: Iterable<number>): Generator<string, void, undefined>

Decodes a sequence of tokens using a generator, yielding chunks of decoded text. Use this method when you want to decode tokens in chunks, which can be useful for processing large outputs or streaming data.

Example:

import { decodeGenerator } from 'gpt-tokenizer'

const tokens = [18435, 198, 23132, 328]
let decodedText = ''
for (const textChunk of decodeGenerator(tokens)) {
  decodedText += textChunk
}

decodeAsyncGenerator(tokens: AsyncIterable<number>): AsyncGenerator<string, void, undefined>

Decodes a sequence of tokens asynchronously using a generator, yielding chunks of decoded text. Use this method when you want to decode tokens in chunks asynchronously, which can be useful for processing large outputs or streaming data in an asynchronous context.

Example:

import { decodeAsyncGenerator } from 'gpt-tokenizer'

async function processTokens(asyncTokensIterator) {
  let decodedText = ''
  for await (const textChunk of decodeAsyncGenerator(asyncTokensIterator)) {
    decodedText += textChunk
  }
}

License

MIT

Contributing

Contributions are welcome! Please open a pull request or an issue to discuss your ideas, bug reports, or any other inquiries.

Keywords

FAQs

Package last updated on 23 May 2023

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc