Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

js-scrypt-em

Package Overview
Dependencies
Maintainers
1
Versions
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

js-scrypt-em

Emscripten-compiled Javascript version of scrypt, a high-quality password-based key derivation function.

  • 0.0.1
  • latest
  • npm
  • Socket score

Version published
Weekly downloads
0
decreased by-100%
Maintainers
1
Weekly downloads
 
Created
Source

js-scrypt: Pure-Javascript Emscripten-compiled scrypt routine

Emscripten-compiled scrypt, a Password-Based Key Derivation Function from Colin Percival.

For general background on what scrypt is, and why it's useful, see these slides (PDF) and Colin Percival's page on scrypt.

This library is intended only for use in the browser; for node.js, there are plenty of existing options.

This library was written in order to interoperate with js-nacl, a cryptographic toolkit library.

Building the library

The git checkout includes a pre-compiled version of the library, so you won't need Emscripten unless you want to change something about the underlying library itself or how it is compiled.

Essentially, the source checkout contains everything you will need to use the library in the browser.

Using the library

In the browser, include the browser/scrypt-<version>.js script:

<script src="browser/scrypt-0.0.1.js"></script>
...
<script> alert(window.scrypt.to_hex(scrypt.random_bytes(16))); </script>

This will add scrypt to the window object, if that is undesired the script does have a UMD wrapper around it and will work with require.js as well as npm and browserify.

If you need an instance of scrypt with the total memory adjusted from it's default use scrypt.create(total_memory). The create method takes an optional argument specifying the total memory available for use by scrypt(). If supplied, it must be a power of two. If omitted, the default is 33,554,432 bytes; 32 megabytes.

The memory assigned to the produced scrypt module will not be released until the module is garbage collected.

Strings vs. Binary Data

The library enforces a strict distinction between strings and binary data. Binary data is represented using instances of Uint8Array.

scrypt.to_hex(Uint8Array) → String

Returns a lower-case hexadecimal representation of the given binary data.

scrypt.encode_utf8(String) → Uint8Array

Returns the binary equivalent of the argument, encoded using UTF-8.

scrypt.encode_latin1(String) → Uint8Array

Returns the binary equivalent of the argument, encoded using Latin1 (an 8-bit clean encoding). If any of the character codes in the argument string are greater than 255, an exception is thrown.

scrypt.decode_utf8(Uint8Array) → String

Decodes the binary data in the argument using the UTF-8 encoding, producing the corresponding string.

scrypt.decode_latin1(Uint8Array) → String

Decodes the binary data in the argument using the Latin1 8-bit clean encoding, producing the corresponding string.

Using crypto_scrypt

To generate L bytes of derived key material from a password passwd and a salt salt,

  • choose N, which must be a power of two, which will set the overall difficulty of the computation. The scrypt paper uses 214=16384 for interactive logins, and 220=1048576 for file encryption, but running in the browser is slow so Your Mileage Will Almost Certainly Vary.

  • choose r and p. Good values are r=8 and p=1. See the scrypt paper for details on these parameters.

Choose wisely! Picking good values for N, r and p is important for making your keys sufficiently hard to brute-force.

Ensure your password and salt are both represented as Uint8Array instances, perhaps by calling scrypt.encode_utf8 or similar.

Then,

var keyBytes = scrypt.crypto_scrypt(password, salt, N, r, p, L);

and keyBytes will contain L bytes of key material.

For example,

scrypt.crypto_scrypt(scrypt.encode_utf8("pleaseletmein"),
                     scrypt.encode_utf8("SodiumChloride"),
                     16384, 8, 1, 64)

produces 64 bytes of key material,

7023bdcb3afd7348461c06cd81fd38eb
fda8fbba904f8e3ea9b543f6545da1f2
d5432955613f0fcf62d49705242a9af9
e61e85dc0d651e40dfcf017b45575887

as a Uint8Array.

License

js-scrypt is written by Tony Garnock-Jones tonygarnockjones@gmail.com and is licensed under the 2-clause BSD license:

Copyright © 2013, Tony Garnock-Jones All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

  1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

  2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

js-scrypt relies on scrypt itself, which is written by Colin Percival and licensed as follows:

Copyright 2009 Colin Percival All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

  1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
  2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Keywords

FAQs

Package last updated on 17 Nov 2013

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc