libsodium.js
Overview
The sodium crypto library compiled
to pure JavaScript using Emscripten,
with automatically generated wrappers to make it easy to use in web
applications.
The complete library weights 149 Kb (minified, gzipped) and can run in
a web browser as well as server-side.
Compatibility
Supported browsers/JS engines:
- Chrome >= 16
- Edge >= 0.11
- Firefox >= 21
- Internet Explorer >= 11
- Mobile Safari on iOS >= 8.0 (older versions produce incorrect results)
- NodeJS
- Opera >= 15
- Safari >= 6 (older versions produce incorrect results)
Installation
Ready-to-use files based on libsodium 1.0.10 can be directly copied to your
project.
Usage with global definitions, for web browsers
Use Bower:
$ bower install libsodium.js
or directly include a copy of the
sodium.min.js
file.
Alternatively, for better performance and to avoid including a local copy,
libsodium.js is available on cdnjs.
Including the sodium.min.js
file will add a sodium
object to the
global namespace.
If a sodium
object is already present in the global namespace, and
the sodium.onload
function is defined, this function will be called
right after the library has been loaded and initialized.
<script>
window.sodium = { onload: function(sodium) {
alert(sodium.to_hex(sodium.crypto_generichash(64, 'test')));
}};
</script>
...
<script src="sodium.js" async defer></script>
As an alternative, use a module loader or Browserify as described below.
Usage with CommonJS/AMD/ES6 import
Copy the .js
files for libsodium and libsodium-wrappers
to your project and load the libsodium-wrappers
module.
Alternatively, use npm. The npm package is
called libsodium-wrappers
and includes a dependency on the raw
libsodium
module.
var sodium = require('libsodium-wrappers');
console.log(sodium.to_hex(sodium.crypto_generichash(64, 'test')));
List of wrapped algorithms and functions:
Additional helpers
from_base64()
, to_base64()
from_hex()
, to_hex()
from_string()
, to_string()
memcmp()
(constant-time check for equality, returns true
or false
)compare() (constant-time comparison. Values must have the same size. Returns
-1,
0or
1`)memzero()
(applies to Uint8Array
objects)increment()
(increments an arbitrary-long number stored as a
little-endian Uint8Array
- typically to increment nonces)add()
(adds two arbitrary-long numbers stored as little-endian
Uint8Array
vectors)is_zero()
(constant-time, checks Uint8Array
objects for all zeros)
API
The API exposed by the wrappers is identical to the one of the C
library, except that buffer lengths never need to be explicitly given.
Binary input buffers should be Uint8Array
objects. However, if a string
is given instead, the wrappers will automatically convert the string
to an array containing a UTF-8 representation of the string.
Example:
var key = sodium.randombytes_buf(sodium.crypto_shorthash_KEYBYTES),
hash1 = sodium.crypto_shorthash(new Uint8Array([1, 2, 3, 4]), key),
hash2 = sodium.crypto_shorthash('test', key);
If the output is a unique binary buffer, it is returned as a
Uint8Array
object.
However, an extra parameter can be given to all wrapped functions, in
order to specify what format the output should be in. Valid options
are `uint8array' (default), 'text', 'hex' and 'base64'.
Example:
var key = sodium.randombytes_buf(sodium.crypto_shorthash_KEYBYTES),
hash_hex = sodium.crypto_shorthash('test', key, 'hex');
In addition, the from_base64
, to_base64
, from_hex
, to_hex
,
from_string
, and to_string
functions are available to explicitly
convert base64, hexadecimal, and arbitrary string representations
from/to Uint8Array
objects.
Functions returning more than one output buffer are returning them as
an object. For example, the sodium.crypto_box_keypair()
function
returns the following object:
{ keyType: 'curve25519', privateKey: (Uint8Array), publicKey: (Uint8Array) }
Standard vs Sumo version
The standard version (in the dist/browsers
and dist/modules
directories) contains the high-level functions, and is the recommended
one for most projects.
Alternatively, the "sumo" version, available in the
dist/browsers-sumo
and dist/modules-sumo
directories contains all
the symbols from the original library. This includes undocumented,
untested, deprecated, low-level and easy to misuse functions.
It is slightly larger than the standard version, and should be used
only if you really need the extra symbols it provides.
Compilation
If you want to compile the files yourself, the following dependencies
need to be installed on your system:
- autoconf
- automake
- emscripten
- git
- nodejs
- libtool
- make
- zopfli (
npm install -g node-zopfli
) - uglifyjs (
npm install -g uglifyjs
)
Running make
will clone libsodium, build it, test it, build the
wrapper, and create the modules and minified distribution files.
Custom build
The build available in this repository does not contain all the functions available in the original libsodium library.
Providing that you have all the build dependencies installed, here is how you can build libsodium.js to include the functions you need :
git clone https://github.com/jedisct1/libsodium.js
cd ./libsodium.js
# Get the original C version of libsodium and configure it
make libsodium/configure
# Modify the emscripten.sh
# Specifically, add the name of the missing functions and constants in the "EXPORTED_FUNCTIONS" array.
# Ensure that the name begins with an underscore and that it is between double quotes.
nano libsodium/dist-build/emscripten.sh
# Build libsodium, and then libsodium.js with your chosen functions
make
NOTE: for each of the functions/constants you add, make sure that the corresponding symbol files exist in the wrapper/symbols
folder and that the constants are listed in the wrapper/constants.json
file.
Authors
Built by Ahmad Ben Mrad and Frank Denis.
License
This wrapper is distributed under the
ISC License.