Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

mindsdb-js-sdk

Package Overview
Dependencies
Maintainers
2
Versions
97
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

mindsdb-js-sdk

[![npm version](https://img.shields.io/badge/npm-v6.13.7-orange)](https://www.npmjs.com/package/mindsdb-js-sdk) [![axios](https://img.shields.io/badge/axios-v0.18.1-orange)](https://www.npmjs.com/package/mindsdb-js-sdk) [![install size](https://img.shield

  • 0.5.14
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
233
increased by3.1%
Maintainers
2
Weekly downloads
 
Created
Source

MindsDB

npm version axios install size

JS MindsDB SDK

MindsDB generates metadata about your specific machine learning task, that you can visualize through our graphical user interface MindsDB GUI.

Installing

Using npm:

$ npm install mindsdb-js-sdk

Using yarn:

$ yarn add mindsdb-js-sdk

Install and build

Commands should executed from javascript/ folder.

  1. install dependencies:
yarn
npm install
  1. build:
yarn build
npm run build

Folder Structure

./
├── src/        - source code
    ├── index.js       - sdk source code
├── dist/       - builded lib with all dependences (for browser)
├── es/         - builded es6 module
├── lib/        - builded UMD module (can be used in node)
├── rollup.config.js   - build config
├── .babelrc.js        - babel config
├── package.json       - package config
├── ...

Usage

example of usage:

import MindsDB from 'mindsdb-js-sdk';

//connection
MindsDB.connect("http://127.0.0.1:47334/api", [{key:"apikey",value:"placeholder"}]);
const connected = await MindsDB.ping();
if (!connected) return;

// lists of predictors and datasources
const predictorsList = MindsDB.dataSources();
const predictors = MindsDB.predictors();

// get datasource
const catsDatasorce = await MindsDB.DataSource({name: 'cat'}).load();

// get predictor
const catAgePredictor = await MindsDB.Predictor({name: 'catAge'}).load();

// query
const result = catAgePredictor.queryPredict({color: 'white', weight: '100'});
console.log(result.age);

MindsDB.disconnect();

Documentation

root methods

MindsDB.connect(url)

Initialize connection to MindsDV server

params

  • url string - server url

returns undefined

MindsDB.disconnect()

Clear connection data

returns undefined

async MindsDB.ping()

Check connection

returns bool

async MindsDB.predictors()

return list of existing predictors returns [{PredictorObject}, ...]

async MindsDB.dataSources()

return list of existing datasources returns [{DatasourceObject}, ...]

MindsDB.DataSource(opts = { name })

return datasource object params

  • opts object
    • name string datasource name

returns {DataSourceObject}

MindsDB.Predictor(opts = { name })

return predictor object params

  • opts object
    • name string predictor name

returns {PredictorObject}

DataSourceObject methods

async DataSourceObject.load()

load data for this dataSource

returns {DataSourceObject} this object

async DataSourceObject.upload(file, onProgress)

upload datasource-file to server params

  • file object
  • onProgress function

returns undefined

async DataSourceObject.uploadFromUrl(url)

upload datasource to server, by url params

  • url string

returns undefined

async DataSourceObject.download()

initiate datasource downloading

returns {DataSourceObject} this object

async DataSourceObject.getDownloadUrl()

returns string download datasource url

async DataSourceObject.delete()

delete datasource returns undefined

async DataSourceObject.loadData()

get datasource rows

returns [{rows}, ...] data rows

async DataSourceObject.loadMissedFileList()

get list of missed files for datasource

returns [{rows}, ...]

async DataSourceObject.uploadFile(opts = { column, rowIndex, extension, file })

params

  • opts object
    • column string
    • rowIndex string
    • extension string
    • file object

returns bool - successful

PredictorObject methods

async PredictorObject.load()

load data for this predictor

returns {PredictorObject} this object

async PredictorObject.loadColumns()

load information about columns used for make predictor. After loading columns will be available at this.columns

returns {PredictorObject} this object

async PredictorObject.learn(opts = { dataSourceName, fromData, toPredict })

params

  • opts object
    • dataSourceName string name of datasource
    • fromData string Optional url to a file that you want to learn from
    • toPredict [string] list of column names to predict

returns string empty string

async PredictorObject.queryPredict(when)

query to predictor

params

  • when object key-value for query fields, example:

    when: {sqft: "1000", location: "good"}

returns object key-value for query and predicted foelds

async PredictorObject.delete()

delete predictor

returns undefined

async PredictorObject.upload(file, onProgress)

upload predictor to server

params

  • file object
  • onProgress function

returns undefined

async PredictorObject.download()

initiate predictor downloading

returns {PredictorObject} this object

async PredictorObject.getDownloadUrl()

returns string download predictor url

License

MIT

Keywords

FAQs

Package last updated on 15 Apr 2021

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc