Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

ml-cross-validation

Package Overview
Dependencies
Maintainers
8
Versions
5
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ml-cross-validation

Cross validation utility for mljs classifiers

  • 1.3.0
  • latest
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
227
decreased by-9.2%
Maintainers
8
Weekly downloads
 
Created
Source

cross-validation

NPM version build status npm download

Utility library to do cross validation with supervised classifiers.

Cross-validation methods:

API documentation.

A list of the mljs supervised classifiers is available here in the supervised learning section, but you could also use your own. Cross validations methods return a ConfusionMatrix (https://github.com/mljs/confusion-matrix) that can be used to calculate metrics on your classification result.

Installation

npm i -s ml-cross-validation

Example using a ml classification library

const crossValidation = require('ml-cross-validation');
const KNN = require('ml-knn');
const dataset = [[0, 0, 0], [0, 1, 1], [1, 1, 0], [2, 2, 2], [1, 2, 2], [2, 1, 2]];
const labels = [0, 0, 0, 1, 1, 1];
const confusionMatrix = crossValidation.leaveOneOut(KNN, dataSet, labels);
const accuracy = confusionMatrix.getAccuracy();

Example using a classifier with its own specific API

If you have a library that does not comply with the ML Classifier conventions, you can use can use a callback to perform the classification. The callback will take the train features and labels, and the test features. The callback shoud return the array of predicted labels.

const crossValidation = require('ml-cross-validation');
const KNN = require('ml-knn');
const dataset = [[0, 0, 0], [0, 1, 1], [1, 1, 0], [2, 2, 2], [1, 2, 2], [2, 1, 2]];
const labels = [0, 0, 0, 1, 1, 1];
const confusionMatrix = crossValidation.leaveOneOut(dataSet, labels, function(trainFeatures, trainLabels, testFeatures) {
  const knn = new KNN(trainFeatures, trainLabels);
  return knn.predict(testFeatures);
});
const accuracy = confusionMatrix.getAccuracy();

ML classifier API conventions

You can write your classification library so that it can be used with ml-cross-validation as described in here For that, your classification library must implement

  • A constructor. The constructor can be passed options as a single argument.
  • A train method. The train method is passed the data as a first argument and the labels as a second.
  • A predict method. The predict method is passed test data and should return a predicted label.

Example

class MyClassifier {
  constructor(options) {
    this.options = options;
  }
  train(data, labels) {
    // Create your model
  }
  predict(testData) {
    // Apply your model and return predicted label
    return prediction;
  }
}

Keywords

FAQs

Package last updated on 31 Jan 2020

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc