Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

mongoose-timeseries

Package Overview
Dependencies
Maintainers
1
Versions
8
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

mongoose-timeseries

a time series data and analytics storage plugin for Mongoose

  • 1.3.0
  • latest
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
3
decreased by-40%
Maintainers
1
Weekly downloads
 
Created
Source

mongoose-timeseries

a time series data and analytics storage plugin for Mongoose.

NPM

Installation

npm install mongoose-timeseries

Usage

Create your Schema
var YourDocumentSchema = new Schema({
   attr1: { type: Schema.Types.ObjectId, ref: 'attr1' },
   attr2: { type: Schema.Types.ObjectId, ref: 'attr2' },
   date: { type: Date, default: Date.now },
   analytics: {
     metric: { type: Number }
   },
   info: {
      sub1: { type: String },
      sub2: { type: String },
      sub3: { type: String }
   }
})
Apply Plugin
var mongoose = require('mongoose')
var timeseries = require('mongoose-timeseries')

YourDocumentSchema.plugin(timeseries, {
   target: 'TimeSeriesDocument',
   dateField: 'date',
   resolutions: ['minute', 'day'],
   key: {
      attr1: 1,
      attr2: 1,
      info: function(doc) {
         return doc.info.sub1 + doc.info.sub2 + doc.info.sub3
      }
   },
   data: {
      metric: {
         source: 'analytics.metric',
         operations: ['sum', 'max', 'min'],
         calculations: ['average', 'range', 'range_min', 'range_max']
      }
   }
})
Watch your time series data grow!

Your saved time series documents will look like:

{
  date: {
    start: Mon Aug 01 2016 00:00:00 GMT-0600(MDT),
    end: Mon Aug 01 2016 23:58:42 GMT-0600(MDT)
  }
  resolution: 'day',
  count: 5,
  data: {
    metric: {
      count: 5,
      sum: 697,
      min: 100,
      max: 200
    }
  },
  key: {
    attr1: '55931aba4f3b26d63810a55d',
    attr2: '5536011b00a57af8243d7e5b',
    info: 'ABC'
  },
  _id: 57 a50178e47cea6f5d7f1c3b
}

Your queried and found time series documents will look like:

{
  date: {
    start: Mon Aug 01 2016 00:00:00 GMT-0600(MDT),
    end: Mon Aug 01 2016 23:58:42 GMT-0600(MDT)
  }
  resolution: 'day',
  count: 5,
  data: {
    metric: {
      count: 5,
      sum: 697,
      min: 100,
      max: 200,
      average: 139.4,
      range: 100,
      range_min: 39.4,
      range_max: 60.6
    }
  },
  key: {
    attr1: '55931aba4f3b26d63810a55d',
    attr2: '5536011b00a57af8243d7e5b',
    info: 'ABC'
  },
  _id: 57 a50178e47cea6f5d7f1c3b
}

This is because the calculations are performed as middleware during Mongoose Find() executions.

Documentation

Function
YourDocumentSchema.plugin(timeseries, options(Object))

You can apply multiple times with different options:

YourDocumentSchema.plugin(timeseries, options1(Object))
YourDocumentSchema.plugin(timeseries, options2(Object))
YourDocumentSchema.plugin(timeseries, options3(Object))
Options
target(String)

The MongoDB collection name (destination) of the specific time series data.


dateField(String)

The custom date field of your schema (if applicable). If not set, defaults to document._id.getTimestamp()


resolutions(Array)

The time series resolutions you want: Can include any or all of ['minute', 'hour', 'day', 'month']


key(Object)

The unique information you'd like your time series to separate and store.

key.'attribute'(Number | Function)

For each key, use the number '1' to relay the name, or a function that returns your value to store on the key.


data(Object)

The data you'd like to keep track of.

data.'attribute'.source(String)

The source of the parameter you're tracking. Can be nested like:

'analytics.metrics.metric1'
data.'attribute'.operations(Array of Strings)

The operations to perform. Currently supports 'sum', 'max', and 'min'

data.'attribute'.calculations(Array of Strings)

The "post-find" calculations to perform. Currently supports 'average', 'range', 'range_min', and 'range_max'

average = sum / count, range = max - min, range_min = average - min, (must also include average), range_max = max - average (must also include average)


Using the Time Series Data

Now, in your front-end analytics, you can query the time series data like:

var startDateFromUI = ...
var endDateFromUI = ...

TimeSeriesAnalyticsModel.find({
  resolution: 'day',
  'date.start': {
    $gte: startDateFromUI,
    $lte: endDateFromUI
  }
} function(err, results) {
  console.log(results)
})

Tests (incomplete)

npm install
npm test

Assumptions

  • Original source documents are a continual stream of data being dumped
  • Documents in the source time-series collection are never themselves found and updated

To-do

  • Tests
  • Auto-indexing
  • Auto-remove (removes source time-series documents automatically after a set interval... capped collection?)

License

MIT

Keywords

FAQs

Package last updated on 10 Aug 2016

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc