Security News
Python Overtakes JavaScript as Top Programming Language on GitHub
Python becomes GitHub's top language in 2024, driven by AI and data science projects, while AI-powered security tools are gaining adoption.
nano-memoize
Advanced tools
Faster than fast, smaller than micro ... a nano speed and nano size memoizer.
The devs caiogondim and planttheidea have produced great memoizers. We analyzed their code to see if we could build something faster than fast-memoize and smaller than micro-memoize while adding back some of the functionality of moize removed in micro-memoize. We think we have done it ... but credit to them ... we just merged the best ideas in both and eliminated excess code.
The minified/gzipped size is 589 bytes for nano-memoize
vs 959 bytes for micro-memoize
. And, nano-memoize
has slightly more functionality.
The speed tests are below. In most cases nano-memoize
is the fastest.
For single primitive argument functions it is comparable to, but slightly and probably un-importantly faster that fast-memoize
.
For single object argument functions it is always by far the fastest.
For multiple primitive argument functions functionsnano-memoize
slightly and probably un-importantly faster than fast-memoize
.
For multiple object argument functions fast-memoize
slightly and probably un-importantly faster.
We have found that benchmarks can vary dramatically from O/S to O/S or Node version to Node version. These tests were run on a Windows 10 64bit 2.4ghz machine with 8GB RAM and Node v9.4.0. Also, even with multiple samplings, garbage collection can have a substative impact and multiple runs in different orders are really required for apples-to-apples comparisons.
Functions with a single primitive parameter...
+----------------------------------------------------------------------+
� Name � Ops / sec � Relative margin of error � Sample size �
+---------------+-------------+--------------------------+-------------�
� nano-memoize � 277,174,954 � � 0.39% � 94 �
+---------------+-------------+--------------------------+-------------�
� fast-memoize � 243,829,313 � � 4.97% � 81 �
+---------------+-------------+--------------------------+-------------�
� iMemoized � 49,406,719 � � 3.90% � 82 �
+---------------+-------------+--------------------------+-------------�
� micro-memoize � 48,245,239 � � 2.19% � 89 �
+---------------+-------------+--------------------------+-------------�
� moize � 47,380,879 � � 0.59% � 88 �
+---------------+-------------+--------------------------+-------------�
� lru-memoize � 39,284,232 � � 4.35% � 87 �
+---------------+-------------+--------------------------+-------------�
� lodash � 31,464,058 � � 2.91% � 91 �
+---------------+-------------+--------------------------+-------------�
� memoizee � 19,406,111 � � 4.90% � 79 �
+---------------+-------------+--------------------------+-------------�
� underscore � 16,986,840 � � 5.83% � 75 �
+---------------+-------------+--------------------------+-------------�
� addy-osmani � 4,496,619 � � 0.98% � 92 �
+---------------+-------------+--------------------------+-------------�
� memoizerific � 2,394,952 � � 6.96% � 49 �
+---------------+-------------+--------------------------+-------------�
� ramda � 1,095,063 � � 2.10% � 86 �
+----------------------------------------------------------------------+
Functions with a single object parameter...
+----------------------------------------------------------------------+
� Name � Ops / sec � Relative margin of error � Sample size �
+---------------+-------------+--------------------------+-------------�
� nano-memoize � 271,647,146 � 0.74% � 90 �
+---------------+-------------+--------------------------+-------------�
� micro-memoize � 44,126,430 � 4.22% � 81 �
+---------------+-------------+--------------------------+-------------�
� fast-memoize � 44,125,722 � 2.14% � 82 �
+---------------+-------------+--------------------------+-------------�
� iMemoized � 43,981,304 � 1.61% � 89 �
+---------------+-------------+--------------------------+-------------�
� moize � 32,603,505 � 3.19% � 14 �
+---------------+-------------+--------------------------+-------------�
� lodash � 31,277,037 � 1.16% � 88 �
+---------------+-------------+--------------------------+-------------�
� underscore � 20,293,644 � 1.02% � 88 �
+---------------+-------------+--------------------------+-------------�
� memoizee � 11,533,134 � 1.35% � 89 �
+---------------+-------------+--------------------------+-------------�
Functions with multiple parameters that contain only primitives...
+---------------------------------------------------------------------+
� Name � Ops / sec � Relative margin of error � Sample size �
+---------------+------------+--------------------------+-------------�
� nano-memoize � 24,739,433 � 0.98% � 85 �
+---------------+------------+--------------------------+-------------�
� micro-memoize � 23,131,341 � 3.33% � 74 �
+---------------+------------+--------------------------+-------------�
� moize � 20,241,359 � 2.45% � 81 �
+---------------+------------+--------------------------+-------------�
� memoizee � 9,917,821 � 2.58% � 85 �
+---------------+------------+--------------------------+-------------�
� lru-memoize � 7,582,999 � 2.85% � 82 �
+---------------+------------+--------------------------+-------------�
� iMemoized � 4,765,891 � 12.92% � 68 �
+---------------+------------+--------------------------+-------------�
� memoizerific � 3,200,253 � 3.02% � 84 �
+---------------+------------+--------------------------+-------------�
� addy-osmani � 2,240,692 � 2.28% � 87 �
+---------------+------------+--------------------------+-------------�
� fast-memoize � 885,271 � 3.99% � 82 �
+---------------------------------------------------------------------+
Functions with multiple parameters that contain objects...
+---------------------------------------------------------------------+
� Name � Ops / sec � Relative margin of error � Sample size �
+---------------+------------+--------------------------+-------------�
� micro-memoize � 23,846,343 � 3.35% � 84 �
+---------------+------------+--------------------------+-------------�
� nano-memoize � 17,861,879 � 2.49% � 84 �
+---------------+------------+--------------------------+-------------�
� moize � 17,147,054 � 5.62% � 63 �
+---------------+------------+--------------------------+-------------�
� lru-memoize � 7,247,819 � 3.85% � 81 �
+---------------+------------+--------------------------+-------------�
� memoizee � 6,860,227 � 1.17% � 88 �
+---------------+------------+--------------------------+-------------�
� memoizerific � 3,399,423 � 2.60% � 85 �
+---------------+------------+--------------------------+-------------�
� addy-osmani � 795,071 � 1.43% � 85 �
+---------------+------------+--------------------------+-------------�
� fast-memoize � 715,841 � 1.05% � 86 �
+---------------------------------------------------------------------+
Deep equals ...
+---------------------------------------------------------------------------------------------------------+
� Name � Ops / sec � Relative margin of error � Sample size �
+---------------------------------------------------+------------+--------------------------+-------------�
� micro-memoize deep equals (lodash isEqual) � 37,582,028 � 1.87% � 83 �
+---------------------------------------------------+------------+--------------------------+-------------�
� micro-memoize deep equals (fast-equals deepEqual) � 21,181,692 � 6.75% � 66 �
+---------------------------------------------------+------------+--------------------------+-------------�
� nanomemoize deep equals (fast-equals deepEqual) � 17,186,548 � 3.22% � 80 �
+---------------------------------------------------+------------+--------------------------+-------------�
� nanomemoize deep equals (lodash isEqual) � 14,995,992 � 3.49% � 75 �
+---------------------------------------------------+------------+--------------------------+-------------�
� micro-memoize deep equals (hash-it isEqual) � 14,376,860 � 3.27% � 78 �
+---------------------------------------------------------------------------------------------------------+
We were puzzled about the multiple argument performance on fast-memoize
given its stated goal of being the "fastest possible". We discovered that the default caching and serialization approach used by fast-memoize only performs well for single argument functions for two reasons:
It uses JSON.stringify
to create a key for an entire argument list. This can be slow.
Because a single key is generated for all arguments when perhaps only the first argument differs in a call, a lot of extra work is done. The moize
and micro-memoize
approach adopted by nano-memoize
is far faster for multiple arguments.
npm install nano-memoize
Use the code in the browser
directory for the browser
Since most devs are running a build pipeline, the code is not transpiled, although it is browserified
The API is a subset of the moize
API.
const memoized = micromemoize(sum(a,b) => a + b);
memoized(1,2); // 3
memoized(1,2); // pulled from cache
memoized(function,options) returns function
The shape of options is:
{
// only use the provided maxArgs for cache look-up, useful for ignoring final callback arguments
maxArgs: number,
// number of milliseconds to cache a result
maxAge: number,
// the serializer/key generator to use for single argument functions (multi-argument functionsuse equals)
serializer: function,
// the equals function to use for multi-argument functions, e.g. deepEquals for objects (single-argument functions serializer)
equals: function,
// forces the use of multi-argument paradigm, auto set if function has a spread argument or uses `arguments` in its body.
vargs: boolean
}
2019-02-16 v1.0.3 Fixed README formatting
2019-02-16 v1.0.2 Further optimizations to deal with Issue 4. expireInterval
introduced in v1.0.1 removed since it is no longer needed. Also, 25% reduction in size. Code no longer thrashes when memoizing a large number of functions.
2019-02-16 v1.0.1 Memo expiration optimization. Issue 4 addressed.
2018-04-13 v1.0.0 Code style improvements.
2018-02-07 v0.1.2 Documentation updates
2018-02-07 v0.1.1 Documentationand benchmark updates
2018-02-01 v0.1.0 Documentation updates. 50 byte decrease.
2018-01-27 v0.0.7b BETA Documentation updates.
2018-01-27 v0.0.6b BETA Minor size and speed improvements.
2018-01-27 v0.0.5b BETA Fixed edge case where multi-arg key may be shorter than current args.
2018-01-27 v0.0.4b BETA Fixed benchmarks. Removed maxSize. More unit tests. Fixed maxAge.
2018-01-27 v0.0.3b BETA More unit tests. Documentation. Benchmark code in repository not yet running.
2018-01-24 v0.0.2a ALPHA Minor speed enhancements. Benchmark code in repository not yet running.
2018=01-24 v0.0.1a ALPHA First public release. Benchmark code in repository not yet running.
FAQs
Faster than fast, smaller than micro ... a nano speed and nano size memoizer.
The npm package nano-memoize receives a total of 73,620 weekly downloads. As such, nano-memoize popularity was classified as popular.
We found that nano-memoize demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Python becomes GitHub's top language in 2024, driven by AI and data science projects, while AI-powered security tools are gaining adoption.
Security News
Dutch National Police and FBI dismantle Redline and Meta infostealer malware-as-a-service operations in Operation Magnus, seizing servers and source code.
Research
Security News
Socket is tracking a new trend where malicious actors are now exploiting the popularity of LLM research to spread malware through seemingly useful open source packages.