Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

nano-memoize

Package Overview
Dependencies
Maintainers
1
Versions
51
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

nano-memoize

Faster than fast, smaller than micro ... a nano speed and nano size memoizer.

  • 1.0.5
  • Source
  • npm
  • Socket score

Version published
Maintainers
1
Created
Source

Codacy Badge

Faster than fast, smaller than micro ... nano-memoizer.

Introduction

The devs caiogondim and planttheidea have produced great memoizers. We analyzed their code to see if we could build something faster than fast-memoize and smaller than micro-memoize while adding back some of the functionality of moize removed in micro-memoize. We think we have done it ... but credit to them ... we just merged the best ideas in both and eliminated excess code.

The minified/gzipped size is 592 bytes for nano-memoize vs 959 bytes for micro-memoize. And, nano-memoize has slightly more functionality.

The speed tests are below. In most cases nano-memoize is the fastest.

  • For single primitive argument functions it is comparable to, but slightly and probably un-importantly faster that fast-memoize.

  • For single object argument functions it is typically 2x faster than anything else.

  • For multiple primitive argument functionsnano-memoize is slightly and probably un-importantly faster than fast-memoize.

  • For multiple object argument functions micro-memoize is slightly and probably un-importantly faster.

We have found that benchmarks can vary dramatically from O/S to O/S or Node version to Node version. These tests were run on a Windows 10 64bit 2.4ghz machine with 8GB RAM and Node v11.6.0. Also, even with multiple samplings, garbage collection can have a substative impact and multiple runs in different orders are really required for apples-to-apples comparisons.

Functions with a single primitive parameter...

+----------------------------------------------------------------------+
� Name          � Ops / sec   � Relative margin of error � Sample size �
+---------------+-------------+--------------------------+-------------�
� nano-memoize  � 277,174,954 � � 0.39%                  � 94          �
+---------------+-------------+--------------------------+-------------�
� fast-memoize  � 243,829,313 � � 4.97%                  � 81          �
+---------------+-------------+--------------------------+-------------�
� iMemoized     � 49,406,719  � � 3.90%                  � 82          �
+---------------+-------------+--------------------------+-------------�
� micro-memoize � 48,245,239  � � 2.19%                  � 89          �
+---------------+-------------+--------------------------+-------------�
� moize         � 47,380,879  � � 0.59%                  � 88          �
+---------------+-------------+--------------------------+-------------�
� lru-memoize   � 39,284,232  � � 4.35%                  � 87          �
+---------------+-------------+--------------------------+-------------�
� lodash        � 31,464,058  � � 2.91%                  � 91          �
+---------------+-------------+--------------------------+-------------�
� memoizee      � 19,406,111  � � 4.90%                  � 79          �
+---------------+-------------+--------------------------+-------------�
� underscore    � 16,986,840  � � 5.83%                  � 75          �
+---------------+-------------+--------------------------+-------------�
� addy-osmani   � 4,496,619   � � 0.98%                  � 92          �
+---------------+-------------+--------------------------+-------------�
� memoizerific  � 2,394,952   � � 6.96%                  � 49          �
+---------------+-------------+--------------------------+-------------�
� ramda         � 1,095,063   � � 2.10%                  � 86          �
+----------------------------------------------------------------------+

Functions with a single object parameter...

+----------------------------------------------------------------------+
� Name          � Ops / sec   � Relative margin of error � Sample size �
+---------------+-------------+--------------------------+-------------�
� nano-memoize  � 271,647,146 �   0.74%                  � 90          �
+---------------+-------------+--------------------------+-------------�
� micro-memoize � 44,126,430  �   4.22%                  � 81          �
+---------------+-------------+--------------------------+-------------�
� fast-memoize  � 44,125,722  �   2.14%                  � 82          �
+---------------+-------------+--------------------------+-------------�
� iMemoized     � 43,981,304  �   1.61%                  � 89          �
+---------------+-------------+--------------------------+-------------�
� moize         � 32,603,505  �   3.19%                  � 14          �
+---------------+-------------+--------------------------+-------------�
� lodash        � 31,277,037  �   1.16%                  � 88          �
+---------------+-------------+--------------------------+-------------�
� underscore    � 20,293,644  �   1.02%                  � 88          �
+---------------+-------------+--------------------------+-------------�
� memoizee      � 11,533,134  �   1.35%                  � 89          �
+---------------+-------------+--------------------------+-------------�

Functions with multiple parameters that contain only primitives...

+---------------------------------------------------------------------+
� Name          � Ops / sec  � Relative margin of error � Sample size �
+---------------+------------+--------------------------+-------------�
� nano-memoize  � 24,739,433 �   0.98%                  � 85          �
+---------------+------------+--------------------------+-------------�
� micro-memoize � 23,131,341 �   3.33%                  � 74          �
+---------------+------------+--------------------------+-------------�
� moize         � 20,241,359 �   2.45%                  � 81          �
+---------------+------------+--------------------------+-------------�
� memoizee      � 9,917,821  �   2.58%                  � 85          �
+---------------+------------+--------------------------+-------------�
� lru-memoize   � 7,582,999  �   2.85%                  � 82          �
+---------------+------------+--------------------------+-------------�
� iMemoized     � 4,765,891  �   12.92%                 � 68          �
+---------------+------------+--------------------------+-------------�
� memoizerific  � 3,200,253  �   3.02%                  � 84          �
+---------------+------------+--------------------------+-------------�
� addy-osmani   � 2,240,692  �   2.28%                  � 87          �
+---------------+------------+--------------------------+-------------�
� fast-memoize  � 885,271    �   3.99%                  � 82          �
+---------------------------------------------------------------------+

Functions with multiple parameters that contain objects...

+---------------------------------------------------------------------+
� Name          � Ops / sec  � Relative margin of error � Sample size �
+---------------+------------+--------------------------+-------------�
� micro-memoize � 23,846,343 �   3.35%                  � 84          �
+---------------+------------+--------------------------+-------------�
� nano-memoize  � 17,861,879 �   2.49%                  � 84          �
+---------------+------------+--------------------------+-------------�
� moize         � 17,147,054 �   5.62%                  � 63          �
+---------------+------------+--------------------------+-------------�
� lru-memoize   � 7,247,819  �   3.85%                  � 81          �
+---------------+------------+--------------------------+-------------�
� memoizee      � 6,860,227  �   1.17%                  � 88          �
+---------------+------------+--------------------------+-------------�
� memoizerific  � 3,399,423  �   2.60%                  � 85          �
+---------------+------------+--------------------------+-------------�
� addy-osmani   � 795,071    �   1.43%                  � 85          �
+---------------+------------+--------------------------+-------------�
� fast-memoize  � 715,841    �   1.05%                  � 86          �
+---------------------------------------------------------------------+

Deep equals ...

+---------------------------------------------------------------------------------------------------------+
� Name                                              � Ops / sec  � Relative margin of error � Sample size �
+---------------------------------------------------+------------+--------------------------+-------------�
� micro-memoize deep equals (lodash isEqual)        � 37,582,028 �   1.87%                  � 83          �
+---------------------------------------------------+------------+--------------------------+-------------�
� micro-memoize deep equals (fast-equals deepEqual) � 21,181,692 �   6.75%                  � 66          �
+---------------------------------------------------+------------+--------------------------+-------------�
� nanomemoize deep equals (fast-equals deepEqual)   � 17,186,548 �   3.22%                  � 80          �
+---------------------------------------------------+------------+--------------------------+-------------�
� nanomemoize deep equals (lodash isEqual)          � 14,995,992 �   3.49%                  � 75          �
+---------------------------------------------------+------------+--------------------------+-------------�
� micro-memoize deep equals (hash-it isEqual)       � 14,376,860 �   3.27%                  � 78          �
+---------------------------------------------------------------------------------------------------------+

We were puzzled about the multiple argument performance on fast-memoize given its stated goal of being the "fastest possible". We discovered that the default caching and serialization approach used by fast-memoize only performs well for single argument functions for two reasons:

  1. It uses JSON.stringify to create a key for an entire argument list. This can be slow.

  2. Because a single key is generated for all arguments when perhaps only the first argument differs in a call, a lot of extra work is done. The moize and micro-memoize approach adopted by nano-memoize is far faster for multiple arguments.

Usage

npm install nano-memoize

Use the code in the browser directory for the browser

Since most devs are running a build pipeline, the code is not transpiled, although it is browserified

API

The API is a subset of the moize API.

const memoized = micromemoize(sum(a,b) => a + b);
memoized(1,2); // 3
memoized(1,2); // pulled from cache

memoized(function,options) returns function

The shape of options is:

{
  // only use the provided maxArgs for cache look-up, useful for ignoring final callback arguments
  maxArgs: number, 
  // number of milliseconds to cache a result, set to `Infinity` to never create timers or expire
  maxAge: number, 
  // the serializer/key generator to use for single argument functions (multi-argument functionsuse equals)
  serializer: function,
  // the equals function to use for multi-argument functions, e.g. deepEquals for objects (single-argument functions serializer)
  equals: function, 
  // forces the use of multi-argument paradigm, auto set if function has a spread argument or uses `arguments` in its body.
  vargs: boolean 
}

Release History (reverse chronological order)

2019-03-11 v1.0.5 Now supports setting maxAge to Infinity and no timers will be created to expire caches.

2019-02-26 v1.0.4 Further optimized cache expiration. See Issue 4

2019-02-16 v1.0.3 Fixed README formatting

2019-02-16 v1.0.2 Further optimizations to deal with Issue 4. expireInterval introduced in v1.0.1 removed since it is no longer needed. Also, 25% reduction in size. Code no longer thrashes when memoizing a large number of functions.

2019-02-16 v1.0.1 Memo expiration optimization. Issue 4 addressed.

2018-04-13 v1.0.0 Code style improvements.

2018-02-07 v0.1.2 Documentation updates

2018-02-07 v0.1.1 Documentationand benchmark updates

2018-02-01 v0.1.0 Documentation updates. 50 byte decrease.

2018-01-27 v0.0.7b BETA Documentation updates.

2018-01-27 v0.0.6b BETA Minor size and speed improvements.

2018-01-27 v0.0.5b BETA Fixed edge case where multi-arg key may be shorter than current args.

2018-01-27 v0.0.4b BETA Fixed benchmarks. Removed maxSize. More unit tests. Fixed maxAge.

2018-01-27 v0.0.3b BETA More unit tests. Documentation. Benchmark code in repository not yet running.

2018-01-24 v0.0.2a ALPHA Minor speed enhancements. Benchmark code in repository not yet running.

2018=01-24 v0.0.1a ALPHA First public release. Benchmark code in repository not yet running.

Keywords

FAQs

Package last updated on 11 Mar 2019

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc