NeverThrow 🙅
Description
Encode failure into your program.
This package contains a Result
type that represents either success (Ok
) or failure (Err
).
For asynchronous tasks, neverthrow
offers a ResultAsync
class which wraps a Promise<Result>
and enables chaining.
ResultAsync
is thenable
meaning it behaves exactly like a native Promise<Result>
: the underlying Result
can be accessed using the await
or .then()
operators.
neverthrow
also exposes chain(...)
methods for chaining asynchronous tasks in a functional style (docs below). However, these methods might be deprecated in the future. It is advised to use the ResultAsync
instead.
Read the blog post which explains why you'd want to use this package.
This package works for both JS and TypeScript. However, the types that this package provides will allow you to get compile-time guarantees around error handling if you are using TypeScript.
neverthrow
draws inspiration from Rust, and Elm. It is also a great companion to fp-ts.
Need to see real-life examples of how to leverage this package for error handling? See this repo: https://github.com/parlez-vous/server
Installation
> npm install neverthrow
Usage
Synchronous API
Create Ok
or Err
instances with the ok
and err
functions.
import { ok, err } from 'neverthrow'
const yesss = ok(someAesomeValue)
const mappedYes = yesss.map(doingSuperUsefulStuff)
if (mappedYes.isOk()) {
doStuffWith(mappedYes.value)
} else {
doStuffWith(mappedYes.error)
}
Result
is defined as follows:
type Result<T, E> = Ok<T, E> | Err<T, E>
Ok<T, E>
: contains the success value of type T
Err<T, E>
: contains the failure value of type E
Asynchronous API
Asynchronous methods can return a ResultAsync
type instead of a Promise<Result>
in order to enable further chaining.
ResultAsync
is thenable
meaning it behaves exactly like a native Promise<Result>
: the underlying Result
can be accessed using the await
or .then()
operators.
This is useful for handling multiple asynchronous apis like database queries, timers, http requests, ...
Example:
import { errAsync, ResultAsync } from 'neverthrow'
import { insertIntoDb } from 'imaginary-database'
function addUserToDatabase(user: User): ResultAsync<User, Error> {
if (user.name.length < 3) {
return errAsync(new Error('Username is too short'))
}
return ResultAsync.fromPromise(insertIntoDb(user), () => new Error('Database error'))
}
const asyncRes = addUserToDatabase({ name: 'Tom' })
const asyncRes2 = asyncRes.map((user: User) => user.name)
const res = await asyncRes
if (res.isErr()) {
console.log('Oops fail: ' + res.error.message)
} else {
console.log('Successfully inserted user ' + res.value)
}
asyncRes.then(res => {
if (res.isErr()) {
console.log('Oops fail: ' + res.error.message)
} else {
console.log('Successfully inserted user ' + res.value)
}
})
Top-Level API
neverthrow
exposes the following:
ok
convenience function to create an Ok
variant of Result
err
convenience function to create an Err
variant of Result
Ok
class for you to construct an Ok
variant in an OOP way using new
Err
class for you to construct an Err
variant in an OOP way using new
Result
type - only available in TypeScriptResultAsync
classokAsync
convenience function to create a ResultAsync
containing an Ok
type Result
errAsync
convenience function to create a ResultAsync
containing an Err
type Result
chain
and all of its variants (docs below) - for chaining sequential asynchronous operations that return Result
s
import { ok, Ok, err, Err, Result } from 'neverthrow'
import { chain, chain3, chain4, chain5, chain6, chain7, chain8 } from 'neverthrow'
Accessing the value inside of a Result
This library takes advantage of TypeScript's type-guard feature.
By simply doing an if
(using .isOk
or .isErr
) check on your result, you can inform the TypeScript compiler of whether you have Ok
instance, or an Err
instance, and subsequently you can get access to the value
or error
value in the respective instances.
Example:
import { ok, err } from 'neverthrow'
const example1 = ok(123)
const example2 = err('abc')
if (example1.isOk()) {
} else {
}
if (example2.isErr()) {
} else {
}
API
ok
Constructs an Ok
variant of Result
Signature:
ok<T, E>(value: T): Ok<T, E> { ... }
Example:
import { ok } from 'neverthrow'
const myResult = ok({ myData: 'test' })
myResult.isOk()
myResult.isErr()
err
Constructs an Err
variant of Result
Signature:
err<T, E>(err: E): Err<T, E> { ... }
Example:
import { err } from 'neverthrow'
const myResult = err('Oh noooo')
myResult.isOk()
myResult.isErr()
Result.isOk
(method)
Returns true
if the result is an Ok
variant
Signature:
isOk(): boolean { ... }
Result.isErr
(method)
Returns true
if the result is an Err
variant
Signature:
isErr(): boolean { ... }
Result.map
(method)
Maps a Result<T, E>
to Result<U, E>
by applying a function to a contained Ok
value, leaving an Err
value untouched.
This function can be used to compose the results of two functions.
Signature:
type MapFunc = <T>(f: T) => U
map<U>(fn: MapFunc): Result<U, E> { ... }
Example:
const { getLines } from 'imaginary-parser'
const linesResult = getLines('1\n2\n3\n4\n')
const newResult = linesResult.map(
(arr: Array<string>) => arr.map(parseInt)
)
newResult.isOk()
Result.mapErr
(method)
Maps a Result<T, E>
to Result<T, F>
by applying a function to a contained Err
value, leaving an Ok
value untouched.
This function can be used to pass through a successful result while handling an error.
Signature:
type MapFunc = <E>(e: E) => F
mapErr<U>(fn: MapFunc): Result<T, F> { ... }
Example:
import { parseHeaders } 'imaginary-http-parser'
const rawHeaders = 'nonsensical gibberish and badly formatted stuff'
const parseResult = parseHeaders(rawHeaders)
parseResult.mapErr(parseError => {
res.status(400).json({
error: parseError
})
})
parseResult.isErr()
Result.andThen
(method)
Same idea as map
above. Except you must return a new Result
or ResultAsync
.
If the provided method returns a Result
the returned value will be a Result
.
If the provided method returns a ResultAsync
the returned value will be a ResultAsync
.
This is useful for when you need to do a subsequent computation using the inner T
value, but that computation might fail.
andThen
is really useful as a tool to flatten a Result<Result<A, E2>, E1>
into a Result<A, E2>
(see example below).
Signature:
type AndThenFunc = (t: T) => Result<U, E>
andThen<U>(f: AndThenFunc): Result<U, E> { ... }
type AndThenAsyncFunc = (t: T) => ResultAsync<U, E>
andThen<U>(f: AndThenAsyncFunc): ResultAsync<U, E> { ... }
Example 1: Chaining Results
import { err, ok } from 'neverthrow'
const sq = (n: number): Result<number, number> => ok(n ** 2)
ok(2)
.andThen(sq)
.andThen(sq)
ok(2)
.andThen(sq)
.andThen(err)
ok(2)
.andThen(err)
.andThen(sq)
err(3)
.andThen(sq)
.andThen(sq)
Example 2: Flattening Nested Results
const nested = ok(ok(1234))
const notNested = nested.andThen(innerResult => innerResult)
Result.match
(method)
Given 2 functions (one for the Ok
variant and one for the Err
variant) execute the function that matches the Result
variant.
Match callbacks do not necessitate to return a Result
, however you can return a Result
if you want to.
Signature:
match<A>(
okFn: (t: T) => A,
errFn: (e: E) => A
): A => { ... }
match
is like chaining map
and mapErr
, with the distinction that with match
both functions must have the same return type.
Example:
const result = computationThatMightFail()
const successCallback = (someNumber: number) => {
console.log('> number is: ', someNumber)
}
const failureCallback = (someFailureValue: string) => {
console.log('> boooooo')
}
result.map(successCallback).mapErr(failureCallback)
myval.match(successCallback, failureCallback)
Result.asyncMap
(method)
Similar to map
except for two things:
- the mapping function must return a
Promise
- asyncMap returns a
ResultAsync
You can then chain the result of asyncMap
using the ResultAsync
apis (like map
, mapErr
, andThen
, etc.)
Signature:
type MappingFunc = (t: T) => Promise<U>
asyncMap<U>(fn: MappingFunc): ResultAsync<U, E> { ... }
Example:
import { parseHeaders } 'imaginary-http-parser'
const asyncRes = parseHeaders(rawHeader)
.map(headerKvMap => headerKvMap.Authorization)
.asyncMap(findUserInDatabase)
Note that in the above example if parseHeaders
returns an Err
then .map
and .asyncMap
will not be invoked, and asyncRes
variable will resolve to an Err
when turned into a Result
using await
or .then()
.
okAsync
Constructs an Ok
variant of ResultAsync
Signature:
okAsync<T, E>(value: T): ResultAsync<T, E>
Example:
import { okAsync } from 'neverthrow'
const myResultAsync = okAsync({ myData: 'test' })
const myResult = await myResultAsync
myResult.isOk()
myResult.isErr()
errAsync
Constructs an Err
variant of ResultAsync
Signature:
errAsync<T, E>(err: E): ResultAsync<T, E>
Example:
import { errAsync } from 'neverthrow'
const myResultAsync = errAsync('Oh nooo')
const myResult = await myResultAsync
myResult.isOk()
myResult.isErr()
ResultAsync.fromPromise
(method)
Transforms a Promise<T>
into a ResultAsync<T, E>
.
The second argument handles the rejection case of the promise. If it is ommited, the code might throw because neverthrow
does not know if the promise you are passing to fromPromise
has any promise rejection logic associated to it (via a .catch
method call or catch (err) {}
block).
Signature:
fromPromise<U, E>(p: Promise<U>, f?: (e: unknown) => E): ResultAsync<U, E> { ... }
Example:
import { insertIntoDb } from 'imaginary-database'
const res = ResultAsync.fromPromise(insertIntoDb(myUser), () => new Error('Database error'))
ResultAsync.map
(method)
Maps a ResultAsync<T, E>
to ResultAsync<U, E>
by applying a function to a contained Ok
value, leaving an Err
value untouched.
The applied function can be synchronous or asynchronous (returning a Promise<U>
) with no impact to the return type.
This function can be used to compose the results of two functions.
Signature:
type MapFunc = <T>(f: T | Promise<T>) => U
map<U>(fn: MapFunc): ResultAsync<U, E> { ... }
Example:
const { findUsersIn } from 'imaginary-database'
const usersInCanada = findUsersIn("Canada")
const namesInCanada = usersInCanada.map((users: Array<User>) => users.map(user => user.name))
namesInCanada.then((namesResult: Result<Array<string>, Error>) => {
if(namesResult.isErr()){
console.log("Couldn't get the users from the database", namesResult.error)
}
else{
console.log("Users in Canada are named: " + namesResult.value.join(','))
}
})
ResultAsync.mapErr
(method)
Maps a ResultAsync<T, E>
to ResultAsync<T, F>
by applying a function to a contained Err
value, leaving an Ok
value untouched.
The applied function can be synchronous or asynchronous (returning a Promise<F>
) with no impact to the return type.
This function can be used to pass through a successful result while handling an error.
Signature:
type MapFunc = <E>(e: E) => F | Promise<F>
mapErr<U>(fn: MapFunc): ResultAsync<T, F> { ... }
Example:
const { findUsersIn } from 'imaginary-database'
const usersInCanada = findUsersIn("Canada").mapErr((e: Error) => {
if(e.message === "Unknown country"){
return e.message
}
return "System error, please contact an administrator."
})
usersInCanada.then((usersResult: Result<Array<User>, string>) => {
if(usersResult.isErr()){
res.status(400).json({
error: usersResult.error
})
}
else{
res.status(200).json({
users: usersResult.value
})
}
})
ResultAsync.andThen
(method)
Same idea as map
above. Except the applied function must return a Result
or ResultAsync
.
ResultAsync.andThen
always returns a ResultAsync
no matter the return type of the applied function.
This is useful for when you need to do a subsequent computation using the inner T
value, but that computation might fail.
andThen
is really useful as a tool to flatten a ResultAsync<ResultAsync<A, E2>, E1>
into a ResultAsync<A, E2>
(see example below).
Signature:
type AndThenFunc = (t: T) => ResultAsync<U, E> | Result<U, E>
andThen<U>(f: AndThenFunc): ResultAsync<U, E> { ... }
Example
const { validateUser } from 'imaginary-validator'
const { insertUser } from 'imaginary-database'
const { sendNotification } from 'imaginary-service'
const resAsync = validateUser(user)
.andThen(insertUser)
.andThen(sendNotification)
resAsync.then((res: Result<void, Error>) => {
if(res.isErr()){
console.log("Oops, at least one step failed", res.error)
}
else{
console.log("User has been validated, inserted and notified successfully.")
}
})
ResultAsync.match
(method)
Given 2 functions (one for the Ok
variant and one for the Err
variant) execute the function that matches the ResultAsync
variant.
The difference with Result.match
is that it always returns a Promise
because of the asynchronous nature of the ResultAsync
.
Signature:
match<A>(
okFn: (t: T) => A,
errFn: (e: E) => A
): Promise<A> => { ... }
Example:
const { validateUser } from 'imaginary-validator'
const { insertUser } from 'imaginary-database'
const resultMessage = await validateUser(user)
.andThen(insertUser)
.match((user: User) => `User ${user.name} has been successfully created`,
(e: Error) => `User could not be created because ${e.message}`)
🔗
Chaining API
Disclaimer: the preferred solution to chaining asynchronous tasks is ResultAsync
.
The following method might be deprecated in the future.
tldr: chain
is the .andThen
equivalent for Result
s wrapped inside of a Promise
.
Examples can be found in the tests directory
The chain
functions allow you to create sequential execution flows for asynchronous tasks in a very elegant way.
If you try to create sequential execution flows for, say 3 or more, async tasks using the asyncMap
method, you will end up with nested code (hello callback hell) and a lot of manually unwrapping promises using await
.
chain
takes care of unwrapping Promise
s for you.
Chains have short-circuit behaviour:
One of the properties of the chain
api (thanks to the way Result
s work), is that the chain returns early (or short circuits) once any computation returns a Err
variant.
All chain
functions require that:
- the first argument be a promise with
Result
inside it. - the last argument be a function that returns a promise with
Result
inside it.
All arguments in between the first and the last do not need to be async! You'll see this in the function signatures of chain3
, chain4
, chain5
, etc ...
Here's an example using chain4
(source):
import { ok, chain4 } from 'neverthrow'
chain4(
sessionManager.getSessionUser(),
({ id }) => getSingleSite(id, siteId),
fetchSiteWithComments,
siteWithComments => Promise.resolve(ok(buildSite(siteWithComments))),
)
chain
Signature:
<T1, T2, E>(
r1: Promise<Result<T1, E>>,
r2: (v: T1) => Promise<Result<T2, E>>,
): Promise<Result<T2, E>> => { ... }
The above in plain english:
- given a computation
r1
- evaluate
r2
with the Ok
value of r1
as r2`'s argument.
- If
r1
ends up being an Err
value, then do not evaluate r2
, and instead return the Err
chain3
Signature:
<T1, T2, T3, E>(
r1: Promise<Result<T1, E>>,
r2: (v: T1) => Promise<Result<T2, E>> | Result<T2, E>,
r3: (v: T2) => Promise<Result<T3, E>>,
): Promise<Result<T3, E>> => { ... }
Same thing as chain
, except now you have a middle computation which can be either synchronous or asynchronous.
chain4
Signature:
<T1, T2, T3, T4, E>(
r1: Promise<Result<T1, E>>,
r2: (v: T1) => Promise<Result<T2, E>> | Result<T2, E>,
r3: (v: T2) => Promise<Result<T3, E>> | Result<T3, E>,
r4: (v: T3) => Promise<Result<T4, E>>,
): Promise<Result<T4, E>> => { ... }
Same thing as chain
, except now you have 2 middle computations; any of which can be either synchronous or asynchronous.
chain5
Signature:
<T1, T2, T3, T4, T5, E>(
r1: Promise<Result<T1, E>>,
r2: (v: T1) => Promise<Result<T2, E>> | Result<T2, E>,
r3: (v: T2) => Promise<Result<T3, E>> | Result<T3, E>,
r4: (v: T3) => Promise<Result<T4, E>> | Result<T4, E>,
r5: (v: T4) => Promise<Result<T5, E>>,
): Promise<Result<T5, E>> => { ... }
Same thing as chain
, except now you have 3 middle computations; any of which can be either synchronous or asynchronous.
chain6
Signature:
<T1, T2, T3, T4, T5, T6, E>(
r1: Promise<Result<T1, E>>,
r2: (v: T1) => Promise<Result<T2, E>> | Result<T2, E>,
r3: (v: T2) => Promise<Result<T3, E>> | Result<T3, E>,
r4: (v: T3) => Promise<Result<T4, E>> | Result<T4, E>,
r5: (v: T4) => Promise<Result<T5, E>> | Result<T5, E>,
r6: (v: T5) => Promise<Result<T6, E>>,
): Promise<Result<T6, E>> => {
Same thing as chain
, except now you have 4 middle computations; any of which can be either synchronous or asynchronous.
chain7
Signature:
<T1, T2, T3, T4, T5, T6, T7, E>(
r1: Promise<Result<T1, E>>,
r2: (v: T1) => Promise<Result<T2, E>> | Result<T2, E>,
r3: (v: T2) => Promise<Result<T3, E>> | Result<T3, E>,
r4: (v: T3) => Promise<Result<T4, E>> | Result<T4, E>,
r5: (v: T4) => Promise<Result<T5, E>> | Result<T5, E>,
r6: (v: T5) => Promise<Result<T6, E>> | Result<T6, E>,
r7: (v: T6) => Promise<Result<T7, E>>,
): Promise<Result<T7, E>> => { ... }
Same thing as chain
, except now you have 5 middle computations; any of which can be either synchronous or asynchronous.
chain8
Signature:
<T1, T2, T3, T4, T5, T6, T7, T8, E>(
r1: Promise<Result<T1, E>>,
r2: (v: T1) => Promise<Result<T2, E>> | Result<T2, E>,
r3: (v: T2) => Promise<Result<T3, E>> | Result<T3, E>,
r4: (v: T3) => Promise<Result<T4, E>> | Result<T4, E>,
r5: (v: T4) => Promise<Result<T5, E>> | Result<T5, E>,
r6: (v: T5) => Promise<Result<T6, E>> | Result<T6, E>,
r7: (v: T6) => Promise<Result<T7, E>> | Result<T7, E>,
r8: (v: T7) => Promise<Result<T8, E>>,
): Promise<Result<T8, E>> => { ... }
Same thing as chain
, except now you have 5 middle computations; any of which can be either synchronous or asynchronous.
--
Wrapping a Dependency that throws
incomplete documenation ...
Examples to come soon
A note on the Package Name
Although the package is called neverthrow
, please don't take this literally. I am simply encouraging the developer to think a bit more about the ergonomics and usage of whatever software they are writing.
Throw
ing and catching
is very similar to using goto
statements - in other words; it makes reasoning about your programs harder. Secondly, by using throw
you make the assumption that the caller of your function is implementing catch
. This is a known source of errors. Example: One dev throw
s and another dev uses the function without prior knowledge that the function will throw. Thus, and edge case has been left unhandled and now you have unhappy users, bosses, cats, etc.
With all that said, there are definitely good use cases for throwing in your program. But much less than you might think.