Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

noble-hashes

Package Overview
Dependencies
Maintainers
1
Versions
7
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

noble-hashes

Fast 0-dependency JS implementation of SHA2, SHA3, RIPEMD, BLAKE2/3, HMAC, HKDF, PBKDF2, Scrypt

  • 0.3.0
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
60
decreased by-64.71%
Maintainers
1
Weekly downloads
 
Created
Source

noble-hashes Node CI code style: prettier

Fast, secure & minimal JS implementation of SHA2, SHA3, RIPEMD, BLAKE2/3, HMAC, HKDF, PBKDF2 & Scrypt.

  • noble family, zero dependencies
  • 🔻 Helps JS bundlers with lack of entry point; ensures small size of your app
  • 🔁 No unrolled loops: makes it much easier to verify and reduces source code size 2-5x
  • 🏎 Ultra-fast, hand-optimized for caveats of JS engines
  • 🔍 Unique tests ensure correctness: chained tests, sliding window tests, DoS tests
  • 🧪 Differential fuzzing ensures even more correctness with cryptofuzz
  • 🔑 Scrypt supports n: 2**22 with 4GB arrays while other implementations crash on 2**21 or even 2**20, maxmem security param, onProgress callback
  • 🦘 SHA3 supports Keccak, KangarooTwelve and MarsupilamiFourteen
  • All primitives are just ~2KLOC / 41KB minified / 14KB gzipped. SHA256-only is 240LOC / 7KB minified / 3KB gzipped

The library's initial development was funded by Ethereum Foundation.

This library belongs to noble crypto

noble-crypto — high-security, easily auditable set of contained cryptographic libraries and tools.

  • No dependencies, small files
  • Easily auditable TypeScript/JS code
  • Supported in all major browsers and stable node.js versions
  • All releases are signed with PGP keys
  • Check out all libraries: secp256k1, ed25519, bls12-381, hashes

Usage

Use NPM in node.js / browser, or include single file from GitHub's releases page:

npm install noble-hashes

The library does not have an entry point. It allows you to select specific primitives and drop everything else. If you only want to use sha256, just use the library with rollup or other bundlers. This is done to make your bundles tiny.

const { sha256 } = require('noble-hashes/lib/sha256');
console.log(sha256(new Uint8Array([1, 2, 3])));
// Uint8Array(32) [3, 144,  88, 198, 242, 192, 203,  73, ...]

// you could also pass strings that will be UTF8-encoded to Uint8Array
console.log(sha256('abc'))); // == sha256(new TextEncoder().encode('abc'))

// sha384 is here, because it uses same internals as sha512
const { sha512, sha512_256, sha384 } = require('noble-hashes/lib/sha512');
// prettier-ignore
const {
  sha3_224, sha3_256, sha3_384, sha3_512,
  keccak_224, keccak_256, keccak_384, keccak_512,
  shake128, shake256
} = require('noble-hashes/lib/sha3');
// prettier-ignore
const {
  cshake128, cshake256, kmac128, kmac256, k12, m14
} = require('noble-hashes/lib/sha3-addons');
const { ripemd160 } = require('noble-hashes/lib/ripemd160');
const { blake3 } = require('noble-hashes/lib/blake3');
const { blake2b } = require('noble-hashes/lib/blake2b');
const { blake2s } = require('noble-hashes/lib/blake2s');
const { hmac } = require('noble-hashes/lib/hmac');
const { hkdf } = require('noble-hashes/lib/hkdf');
const { pbkdf2, pbkdf2Async } = require('noble-hashes/lib/pbkdf2');
const { scrypt, scryptAsync } = require('noble-hashes/lib/scrypt');

// small utility method that converts bytes to hex
const { bytesToHex as toHex } = require('noble-hashes/lib/utils');
console.log(toHex(sha256('abc')));
// ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad

API

All hash functions:

  • can be called directly, with Uint8Array.
  • return Uint8Array
  • can receive string, which is automatically converted to Uint8Array via utf8 encoding (not hex)
  • support hashing 4GB of data per update on 64-bit systems (unlimited with streaming)
function hash(message: Uint8Array | string): Uint8Array;
hash(new Uint8Array([1, 3]));
hash('string') == hash(new TextEncoder().encode('string'));

All hash functions can be constructed via hash.create() method:

  • the result is Hash subclass instance, which has update() and digest() methods
  • digest() finalizes the hash and makes it no longer usable
hash
  .create()
  .update(new Uint8Array([1, 3]))
  .digest();

Some hash functions can also receive options object, which can be either passed as a:

  • second argument to hash function: blake3('abc', { key: 'd', dkLen: 32 })
  • first argument to class initializer: blake3.create({ context: 'e', dkLen: 32 })

Modules

SHA2 (sha256, sha512, sha512_256)
import { sha256 } from 'noble-hashes/lib/sha256.js';
const h1a = sha256('abc');
const h1b = sha256
  .create()
  .update(Uint8Array.from([1, 2, 3]))
  .digest();
import { sha512 } from 'noble-hashes/lib/sha512.js';
const h2a = sha512('abc');
const h2b = sha512
  .create()
  .update(Uint8Array.from([1, 2, 3]))
  .digest();

// SHA512/256 variant
import { sha512_256 } from 'noble-hashes/lib/sha512.js';
const h3a = sha512_256('abc');
const h3b = sha512_256
  .create()
  .update(Uint8Array.from([1, 2, 3]))
  .digest();

// SHA384
import { sha384 } from 'noble-hashes/lib/sha512.js';
const h4a = sha384('abc');
const h4b = sha384
  .create()
  .update(Uint8Array.from([1, 2, 3]))
  .digest();

See RFC 4634 and the paper on SHA512/256.

SHA3 (sha3_256, keccak_256, etc)
import {
  sha3_224,
  sha3_256,
  sha3_384,
  sha3_512,
  keccak_224,
  keccak_256,
  keccak_384,
  keccak_512,
  shake128,
  shake256
} from 'noble-hashes/lib/sha3.js';
const h5a = sha3_256('abc');
const h5b = sha3_256
  .create()
  .update(Uint8Array.from([1, 2, 3]))
  .digest();
const h6a = keccak_256('abc');
const h7a = shake128('abc', { dkLen: 512 });
const h7b = shake256('abc', { dkLen: 512 })

See (FIPS PUB 202, Website).

Check out the differences between SHA-3 and Keccak

SHA3 Addons (cSHAKE, KMAC, KangarooTwelve, MarsupilamiFourteen)
import {
  cshake128, cshake256, kmac128, kmac256, k12, m14
} from 'noble-hashes/lib/sha3-addons.js';
const h7c = cshake128('abc', { personalization: 'def' })
const h7d = cshake256('abc', { personalization: 'def' })
const h7e = kmac128('key', 'message')
const h7f = kmac256('key', 'message')
const h7h = k12('abc');
const h7g = m14('abc')

🦘 K12 and M14 are basically faster versions of Keccak.

See KangarooTwelve Paper, RFC Draft, Website and (NIST SP 800-185)

RIPEMD-160
import { ripemd160 } from 'noble-hashes/lib/ripemd160.js';
// function ripemd160(data: Uint8Array): Uint8Array;
const hash8 = ripemd160('abc');
const hash9 = ripemd160()
  .create()
  .update(Uint8Array.from([1, 2, 3]))
  .digest();

See RFC 2286, Website

BLAKE2b, BLAKE2s
import { blake2b } from 'noble-hashes/lib/blake2b.js';
import { blake2s } from 'noble-hashes/lib/blake2s.js';
const h10a = blake2s('abc');
const b2params = { key: new Uint8Array([1]), personalization: t, salt: t, dkLen: 32 };
const h10b = blake2s('abc', b2params);
const h10c = blake2s
  .create(b2params)
  .update(Uint8Array.from([1, 2, 3]))
  .digest();

See RFC 7693, Website.

BLAKE3
import { blake3 } from 'noble-hashes/lib/blake3.js';
// All params are optional
const h11 = blake3('abc', { dkLen: 256, key: 'def', context: 'fji' })

See Website.

HMAC
import { hmac } from 'noble-hashes/lib/hmac.js';
import { sha256 } from 'noble-hashes/lib/sha256.js';
const mac1 = hmac(sha256, 'key', 'message');
const mac2 = hmac.create(sha256, Uint8Array.from([1, 2, 3])).update(Uint8Array.from([4, 5, 6]).digest();

Matches RFC 2104.

HKDF
import { hkdf } from 'noble-hashes/lib/kdf.js';
import { sha256 } from 'noble-hashes/lib/sha256.js';
import { randomBytes } from 'noble-hashes/utils.js';
const inputKey = randomBytes(32);
const salt = randomBytes(32);
const info = 'abc';
const dkLen = 32;
const hk1 = hkdf(sha256, inputKey, salt, info, dkLen);

// == same as
import { hkdf_extract, hkdf_expand } from 'noble-hashes/lib/kdf.js';
import { sha256 } from 'noble-hashes/lib/sha256.js';
const prk = hkdf_extract(sha256, inputKey, salt);
const hk2 = hkdf_expand(sha256, prk, info, dkLen);

Matches RFC 5869.

PBKDF2
import { pbkdf2, pbkdf2Async } from 'noble-hashes/lib/pbkdf2.js';
import { sha256 } from 'noble-hashes/lib/sha256.js';
const pbkey1 = pbkdf2(sha256, 'password', 'salt', { c: 32, dkLen: 32 });
const pbkey2 = await pbkdf2Async(sha256, 'password', 'salt', { c: 32, dkLen: 32 });
const pbkey3 = await pbkdf2Async(sha256, Uint8Array.from([1, 2, 3]), Uint8Array.from([4, 5, 6]), {
  c: 32,
  dkLen: 32,
});

Matches RFC 2898.

Scrypt
import { scrypt, scryptAsync } from 'noble-hashes/lib/scrypt.js';
const scr1 = scrypt('password', 'salt', { N: 2 ** 16, r: 8, p: 1, dkLen: 32 });
const scr2 = await scryptAsync('password', 'salt', { N: 2 ** 16, r: 8, p: 1, dkLen: 32 });
const scr3 = await scryptAsync(Uint8Array.from([1, 2, 3]), Uint8Array.from([4, 5, 6]), {
  N: 2 ** 22,
  r: 8,
  p: 1,
  dkLen: 32,
  onProgress(percentage) {
    console.log('progress', percentage);
  },
  maxmem: 2 ** 32 + 128 * 8 * 1, // N * r * p * 128 + (128*r*p)
});

Matches RFC 7914, Website

  • N, r, p are work factors. To understand them, see the blog post.
  • dkLen is the length of output bytes
  • It is common to use N from 2**10 to 2**22 and {r: 8, p: 1, dkLen: 32}
  • onProgress can be used with async version of the function to report progress to a user.

Memory usage of scrypt is calculated with the formula N * r * p * 128 + (128 * r * p), which means {N: 2 ** 22, r: 8, p: 1} will use 4GB + 1KB of memory. To prevent DoS, we limit scrypt to 1GB + 1KB of RAM used, which corresponds to {N: 2 ** 20, r: 8, p: 1}. If you want to use higher values, increase maxmem using the formula above.

Note: noble supports 2**22 (4GB RAM) which is the highest amount amongst JS libs. Many other implementations don't support it. We cannot support 2**23, because there is a limitation in JS engines that makes allocating arrays bigger than 4GB impossible, but we're looking into other possible solutions.

utils
import { bytesToHex as toHex, randomBytes } from 'noble-hashes/lib/scrypt.js';
console.log(toHex(randomBytes(32)));
  • bytesToHex will convert Uint8Array to a hex string
  • randomBytes(bytes) will produce cryptographically secure random Uint8Array of length bytes

Security

Noble is production-ready.

The library will be audited by an independent security firm in the next few months.

The library has been fuzzed by Guido Vranken's cryptofuzz. You can run the fuzzer by yourself to check it.

A note on timing attacks: JIT-compiler and Garbage Collector make "constant time" extremely hard to achieve in a scripting language. Which means any other JS library can't have constant-timeness. Even statically typed Rust, a language without GC, makes it harder to achieve constant-time for some cases. If your goal is absolute security, don't use any JS lib — including bindings to native ones. Use low-level libraries & languages. Nonetheless we're targetting algorithmic constant time.

We consider infrastructure attacks like rogue NPM modules very important; that's why it's crucial to minimize the amount of 3rd-party dependencies & native bindings. If your app uses 500 dependencies, any dep could get hacked and you'll be downloading rootkits with every npm install. Our goal is to minimize this attack vector.

Speed

Benchmarks measured on Apple M1 with macOS 12 using 32-byte inputs. Note that PBKDF2 and Scrypt are tested with extremely high work factor. To run benchmarks, execute npm run bench-install and then npm run bench

SHA256 x 1,131,221 ops/sec @ 884ns/op
SHA384 x 452,284 ops/sec @ 2μs/op
SHA512 x 451,059 ops/sec @ 2μs/op
SHA3-256, keccak256, shake256 x 185,494 ops/sec @ 5μs/op
Kangaroo12 x 300,480 ops/sec @ 3μs/op
Marsupilami14 x 269,614 ops/sec @ 3μs/op
BLAKE2b x 291,375 ops/sec @ 3μs/op
BLAKE2s x 505,561 ops/sec @ 1μs/op
BLAKE3 x 576,036 ops/sec @ 1μs/op
HMAC-SHA256 x 342,583 ops/sec @ 2μs/op
RIPEMD160 noble x 1,191,895 ops/sec @ 839ns/op
HKDF-SHA256 x 115,500 ops/sec @ 8μs/op
PBKDF2-HMAC-SHA256 262144 x 2 ops/sec @ 338ms/op
PBKDF2-HMAC-SHA512 262144 x 0 ops/sec @ 1024ms/op
Scrypt r: 8, p: 1, n: 262144 x 1 ops/sec @ 637ms/op

Compare to native node.js implementation that uses C bindings instead of pure-js code:

SHA256 32B native x 1,164,144 ops/sec @ 859ns/op
SHA384 32B native x 938,086 ops/sec @ 1μs/op
SHA512 32B native x 946,969 ops/sec @ 1μs/op
SHA3 32B native x 879,507 ops/sec @ 1μs/op
keccak, k12, m14 are not implemented
BLAKE2b 32B native x 879,507 ops/sec @ 1μs/op
BLAKE2s 32B native x 977,517 ops/sec @ 1μs/op
BLAKE3 is not implemented
RIPEMD160 32B native x 913,242 ops/sec @ 1μs/op
HMAC-SHA256 32B native x 755,287 ops/sec @ 1μs/op
HKDF-SHA256 32B native x 207,856 ops/sec @ 4μs/op
PBKDF2-HMAC-SHA256 262144 native x 23 ops/sec @ 42ms/op
Scrypt 262144 native x 1 ops/sec @ 564ms/op
Scrypt 262144 scrypt.js x 0 ops/sec @ 1678ms/op

It is possible to make this library 4x+ faster by doing code generation of full loop unrolls. We've decided against it. Reasons:

  • the library must be auditable, with minimum amount of code, and zero dependencies
  • most method invocations with the lib are going to be something like hashing 32b to 64kb of data
  • hashing big inputs is 10x faster with low-level languages, which means you should probably pick 'em instead

The current performance is good enough when compared to other projects; SHA256 takes only 900 nanoseconds to run.

Contributing & testing

  1. Clone the repository.
  2. npm install to install build dependencies like TypeScript
  3. npm run build to compile TypeScript code
  4. npm run test will execute all main tests. See our approach to testing
  5. npm run test-dos will test against DoS; by measuring function complexity. Takes ~20 minutes
  6. npm run test-big will execute hashing on 4GB inputs, scrypt with 1024 different N, r, p combinations, etc. Takes several hours. Using 8-32+ core CPU helps.

License

The MIT License (MIT)

Copyright (c) 2021 Paul Miller (https://paulmillr.com)

See LICENSE file.

Keywords

FAQs

Package last updated on 27 Oct 2021

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc