Security News
RubyGems.org Adds New Maintainer Role
RubyGems.org has added a new "maintainer" role that allows for publishing new versions of gems. This new permission type is aimed at improving security for gem owners and the service overall.
NoGap is a full-stack (spans Host and Client) JavaScript framework, featuring RPC + simple code sharing + basic asset management + full-stack Promise chains and more...
NoGap is a full-stack (spans Host and Client) JavaScript framework, featuring RPC (Remote Procedure Calls) + simple code sharing + basic asset management + full-stack Promise chains.
NoGap's primary use case is development of rich single-page web applications while alleviating the typical hassles of doing so.
This module is called No
Gap
because it removes the typical gap that exists between Host and Client and that makes a client-server-architecture so cumbersome to develop.
You probably want to start by having a look at the Samples for reference.
If you want to get serious, take a look at the Getting Started section to figure out how to build a complete Node-based web application with NoGap.
The Structure of NoGap components section lays out the structure of NoGap's basic building block: the component.
Note that currently, the only dependency of NoGap is Node
and some of its modules but even that is planned to be removed in the future.
NOTE: NoGap is still in Beta. Things are still changing. If you are concerned about that, feel free to contact me directly.
Link.
var NoGapDef = require('nogap').Def;
module.exports = NoGapDef.component({
Client: NoGapDef.defHost(function(Tools, Instance, Context) {
return {
initClient: function() {
document.body.innerHTML = 'Hello World!';
}
};
});
});
Concepts
Def
helper: var NoGapDef = require('nogap').Def;
NoGapDef.component({ ... });
Client
definition to the component: Client: NoGapDef.defClient(function(Tools, Instance, Context) { ... })
initClient
method to Client
What is the trick?
Client
code is automatically deployed to the clientinitClient
is then automatically called on the client, right afterwardsAdd to PATH
during GUI-based installation.Ctrl+R
-> Type cmd
-> Enter
npm install nogap
Link.
The Samples highlight some (soon, all!) features of the NoGap framework and how they are used. To run the samples:
node_modules/nogap
subfolder.cd node_modules/nogap/samples/HelloWorld
(or any other sample)npm install
(will automatically download and install the sample's dependencies)npm start
(this will run the app defined in the sample's package.json
)localhost:1234
(or whatever port you are using)Link.
var NoGapDef = require('nogap').Def;
module.exports = NoGapDef.component({
Client: NoGapDef.defClient(function(Tools, Instance, Context) {
return {
initClient: function() {
document.body.innerHTML = 'Hello World!';
}
};
});
});
Concepts
Def
helper: var NoGapDef = require('nogap').Def;
NoGapDef.component({ ... });
Client
definition to the component: Client: NoGapDef.defClient(function(Tools, Instance, Context) { ... })
initClient
method to Client
What is the trick?
Client
code is automatically deployed to the clientinitClient
is then automatically called on the client, right after installationLink.
var NoGapDef = require('nogap').Def;
NoGapDef.component({
Host: NoGapDef.defHost(function(SharedTools, Shared, SharedContext) {
var nBytes = 0;
return {
Public: {
tellMeSomething: function(message) {
nBytes += (message && message.length) || 0;
this.client.showHostMessage('Host has received a total of ' + nBytes + ' bytes.');
}
}
};
}),
Client: NoGapDef.defClient(function(Tools, Instance, Context) {
return {
initClient: function() {
// bind a button to a component function (quick + dirty):
window.clickMe = this.onButtonClick.bind(this);
document.body.innerHTML += '<button onclick="window.clickMe();">Click Me!</button><br />';
},
onButtonClick: function() {
document.body.innerHTML +='Button was clicked.<br />';
this.host.tellMeSomething('hello!');
},
Public: {
showHostMessage: function(msg) {
document.body.innerHTML +='Server said: ' + msg + '<br />';
}
}
};
})
});
Concepts
Client
definition to the component: Client: NoGapDef.defClient(function(Tools, Instance, Context) { ... })
Client.initClient
Host
definition to the component: Host: NoGapDef.defHost(function(SharedTools, Shared, SharedContext) { ... })
Host.Public
Client.Public
What is the trick?
this.host
gives us an object on which we can call Public
methods on the hosttellMeSomething
which is a method that was defined in Host.Public
this.client.showHostMessage
this.host
(available on Client) vs. this.client
(available on Host)NoGap supports full-stack Promise chains. Meaning you can let the Client wait until a Host-side function call has returned. And you can even return a value from a Host function, and it will arrive at the Client. Errors also traverse the entire stack!
Code snippet:
var NoGapDef = require('nogap').Def;
NoGapDef.component({
Host: NoGapDef.defHost(function(SharedTools, Shared, SharedContext) {
var nBytes = 0;
return {
Public: {
tellMeSomething: function(message) {
nBytes += (message && message.length) || 0;
this.Tools.log('Client said: ' + message);
return 'Thank you! I now received a total of ' + nBytes + ' bytes.';
}
}
};
}),
Client: NoGapDef.defClient(function(Tools, Instance, Context) {
return {
initClient: function() {
// bind a button to a component function (quick + dirty):
window.clickMe = this.onButtonClick.bind(this);
document.body.innerHTML += '<button onclick="window.clickMe();">Click Me!</button><br />';
},
onButtonClick: function() {
document.body.innerHTML +='Button was clicked.<br />';
this.host.tellMeSomething('hello!')
.then(function(hostMessage) {
document.body.innerHTML += 'Host said: ' + hostMessage + '<br />';
})
.catch(function(err) {
// this can be a connection error, a bug, a Host-side `reject` etc etc...
console.error('Something went wrong: ' + (err.stack || err));
});
}
};
})
});
New Concepts
Client.initClient
will be called right after the Client connected.this.host.tellMeSomething(...)
which will send a request to the Host
to invoke that method (given it is in Host.Public
).Public
function on a component's host
object returns a promise.Host
method in our then
callback.Link.
Imagine the server had to do an asynchronous operation in tellMeSomething
, such as reading a file, or getting something from the database.
We can simply use promises for that!
tellMeSomething: function() {
Promise.delay(500) // wait 500 milliseconds before replying
.bind(this) // this is tricky!
.then(function() {
this.client.showHostMessage('We have exchanged ' + ++iAttempt + ' messages.');
});
}
And again, we can just return the message and it will arrive at the Client automagically, like so:
tellMeSomething: function() {
Promise.delay(500) // wait 500 milliseconds before replying
.bind(this) // this is tricky!
.then(function() {
return 'We have exchanged ' + ++iAttempt + ' messages.';
});
}
// ...
onButtonClick: function() {
document.body.innerHTML +='Button was clicked.<br />';
this.host.tellMeSomething()
.bind(this) // this is tricky!
.then(function(hostMessage) {
this.showHostMessage(hostMessage);
});
},
New Concepts
this
is tricky!Link.
Base: NoGapDef.defBase(function(SharedTools, Shared, SharedContext) { return {
validateText: function(text) {
if (text.indexOf('a') >= 0 || text.indexOf('A') >= 0) {
return null;
}
return text.trim();
}
};}),
Host: NoGapDef.defHost(function(SharedTools, Shared, SharedContext) { return {
Public: {
setValue: function(value) {
this.value = this.Shared.validateText(value);
// ...
}
}
};}),
Client: NoGapDef.defClient(function(Tools, Instance, Context) { return {
// ...
value = this.validateText(value);
// ...
};})
New Concepts
Base
definition is merged into both Client
and Host
Link.
NoGapDef.component({
Host: NoGapDef.defHost(function(SharedTools, Shared, SharedContext) { return {
Assets: {
AutoIncludes: {
js: [
// jquery
'//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js'
],
css: [
// bootstrap
'//netdna.bootstrapcdn.com/bootstrap/3.1.1/css/bootstrap.min.css'
]
},
Files: {
string: {
/**
* The contents of `template.html` will be automatically made available to the client
* through in the `assets.view` property.
*/
view: 'template.html'
}
}
}
};}),
Client: NoGapDef.defClient(function(Tools, Instance, Context) { return {
initClient: function() {
/**
* Append contents of HTML asset to document.
*/
document.body.innerHTML += this.assets.view;
}
};})
});
New Concepts
AutoIncludes
defines lists of js
and css
files that will be automatically included in the client headerFiles
will be read and it's contents will be available through the clients assets
variable.
code
, image
and more more more...The Simple Sample App already does this.
Examples of multi-component code
say
on ComponentA
: Shared.ComponentA.say('hello');
somePublicMethod
on the client of a ComponentB
instance: this.Instance.ComponentB.client.somePublicMethod(some, data);
TODO!
Promise.reject
in a Host
's Public
function, and then catch
it on the Client side. You will notice that, for security reasons, the contents of Host-side exceptions are modified before being sent to the Client.Tools.onError
to customize error handling (especially on the server)This feature lets clients request components on demand. This way, complex web applications can send code and assets at the time of first usage, not one moment earlier. This saves bandwidth and improves I/O performance.
How?
lazyLoad
to 1
in the configthis.Tools.requestClientComponents(componentNames, callback);
to lazily load components from Host
or from Client
instances.Link.
This App shows how to start building a real application with NoGap. It uses Angular
, Boostrap
and Font-Awesome
to do some real client-side rendering and client<->host communication.
IMPORTANT: None of these libraries are required. You can build your frontend and backend any way you want.
NOTE: The following is a rough explanation of many of NoGap's features. You are recommended to compare the explanation to their actual implementation in the Simple Sample App to better understand them.
Every component has two endpoint definitions, called Host
and Client
, as well as shared code, inside the so-called Base
definition. You provide Host
, Client
and Base
definitions by calling defHost
, defClient
and defBase
respectively. The only argument to these def*
functions is your component definition: A function with three arguments that returns the actual definition object.
Host
Host
has two places for defining functionality: Shared and instance. This distinction is necessary because a Host
can be tied to multiple Client
s. Note though that each Client
can only be tied to a single Host
(as of now).
The Shared object of a component is a singleton; it exists only once for the entire application. You can access all Shared
component objects through the Shared
set which is the second argument of every Host
's component definition.
The instance object of a component exists once for every client. Every client that connects to the server, gets its own set of instances of every active component. On the Host
side, the instance object of a component is defined as the merged result of all members of Private
and Public
which we call instance members. These instance members are accessible through this.Instance
from instance code, that is, code inside of Private
and Public
properties. If you want to hook into client connection and component bootstrapping events, simply define onNewClient
or onClientBootstrap
functions inside Host.Private
. You can access the owning component's Shared singleton through this.Shared
from within Private
or Public
functions.
Inside a Host
instance object, you can directly call Public
instance members on the client through this.client.someClientPublicMethod(some, data)
. Being able to directly call a function on a different computer or in a different program is called RPC (Remote Procedure Call). Similarly, Client
instances can directly call this.host.someHostPublicMethod
which returns a Promise which will be fulfilled once the Host
has run the function and notified the client.
Client
The set of all Client
endpoint definitions is automatically sent to the client and installed, as soon as a client connects. On the client side, this.Shared
and this.Instance
refer to the same object, and Private
and Public
are both merged into the Client
component definition itself. If you want to load components dynamically (i.e. lazily), you need to set the lazyLoad
config parameter to true
or 1
.
Base
Everything from the Base
definition is merged into both, Host
and Client
. Public
and Private
are also merged correspondingly. Since Host
and Client
operate slightly different, certain naming decisions had to be made seemingly in favor of one over the other. E.g. the Shared
concept does not exist on client side (because a Client
only contains a single instance of all components), so there, it simply is the same as Instance
.
Inside Base
members, you can call this.someMethod
even if someMethod
is not declared in Base
, but instead is declared in Host
as well as Client
. At the same time, you can call this.someBaseMethod
from Client
or Host
. That enables you to easily have shared code call endpoint-specific code and vice versa, thereby supporting polymorphism and encapsulation.
This skeleton code summarizes (most of) the available component structure:
/**
* A complete Component skeleton
*/
"use strict";
var NoGapDef = require('nogap').Def;
module.exports = NoGapDef.component({
/**
* If no name is given, NoGap will use the filename as name.
* If you define more than one unnamed component per file, you will see an error.
*/
Name: undefined,
/**
* Array of names (strings) of all components to also be installed
* when installing this component.
* This is to signal that one component depends on or
* requires use of another.
* NOTE: This is important when components are dynamically loaded (`lazyLoad` = 1).
*/
Includes: [ 'Component1', 'SomethingElse' ],
/**
* The `Base` definition is merged into both, `Host` and `Client`
*/
Base: NoGapDef.defBase(function(SharedTools, Shared, SharedContext) {
return {
/**
* Called right before `__ctor` of `Host` and `Client`.
* Will be removed once called.
*/
__ctor: function() {
},
/**
* Called right before `initHost` and `initClient`.
*/
initBase: function() {
},
/**
* Private instance members.
*/
Private: {
},
/**
* Public instance methods that can be called by the other side.
*/
Public: {
}
};
}),
/**
* The `Host` definition is only executed on and visible to the server.
*/
Host: NoGapDef.defHost(function(SharedTools, Shared, SharedContext) {
return {
/**
* The ctor is called only once, during NoGap initialization,
* when the `Shared` component part is created.
* Will be removed once called.
*/
__ctor: function () {
},
/**
* Is called once on each component after
* all components have been created, and after `initBase`.
*/
initHost: function() {
},
/**
* Private instance members.
*/
Private: {
/**
* Is called only once per session and application start,
* when the instance for the given session has been created.
* Will be removed once called.
*/
__ctor: function () {
},
/**
* Called when a client connected.
*/
onNewClient: function() {
},
/**
* Called after `onNewClient`, once this component
* is about to be sent to the `Client`.
* Since components can be deployed dynamically (if `lazyLoad` is enabled),
* this might happen much later, or never.
*/
onClientBootstrap: function() {
}
},
/**
* Public instance methods that can be called by the client.
*/
Public: {
},
};
}),
/**
* The `Client` definition is automatically deployed to every connected client.
*/
Client: NoGapDef.defClient(function(Tools, Instance, Context) {
return {
/**
* Called once after creation of the client-side instance.
* Will be removed once called.
*/
__ctor: function () {
},
/**
* Called once after all currently deployed client-side
* components have been created, and after `initBase`.
*/
initClient: function() {
},
/**
* Called after the given component has been loaded in the Client.
* NOTE: This is generally only important when components are dynamically loaded (`lazyLoad` = 1).
* (Because else, `initClient` will do the trick.)
*/
onNewComponent: function(newComponent) {
},
/**
* Called after the given batch of components has been loaded in the Client.
* This is called after `onNewComponent` has been called
* on each individual component.
* NOTE: This is generally only important when components are dynamically loaded (`lazyLoad` = 1).
* (Because else, `initClient` will do the trick.)
*/
onNewComponents: function(newComponents) {
},
/**
* This will be merged into the Client instance.
* It's members will reside along-side the members defined above it.
*/
Private: {
},
/**
* Public instance methods that can be called by the host.
*/
Public: {
}
};
})
});
TODO: Need to rewrite this with to work with the new version that adapted full-stack Promises.
This tutorial is aimed at those who are new to NoGap
, and new to Node
in general.
It should help you bridge the gap from the Code Snippets to a real-world application.
Note that the Simple Sample App is also following these guidelines.
.
+-- components/
| +-- models/
| +-- ui/
| +-- util/
+-- lib/
+-- pub/
+-- app.js
+-- appConfig.js
+-- package.json
This is the recommended file structure for the average web application. As always, the structure might look vastly different for special purpose applications.
components/
This folder contains your NoGap
components, and possibly (some of) their assets. You can name it anything you want.
NOTE: Placing assets (such as *.html templates, stylesheets, images etc.) next to code is actually good style, if it supports modularization. If your components have a sufficiently modular design, you can simply copy their folder, to deploy them and their assets in other places.
components/models/
This folder contains the interface with your DB and possibly other storage systems. They provide CRUD functionality to the rest of the application.
components/ui/
This folder contains UI-related components. That is UI controller and view code. Views (templates and HTML files) are in files, separate from the code, but they can be in the same folder to support modularity.
components/util/
This folder contains general-purpose utility components used on both Client
and Host
. They usually only contain a Base
definition, with possible specializations in Client
and Host
.
app.js
This defines your actual application. You can name it anything you want. Usually, this file only does three things:
NoGap
express
serverExpress is the standard Node way of starting a HTTP server and let clients connect. Once it is running you can connect to it with your browser on the specified port.
NOTE: When using NoGap
you will not need to work with express anymore (other than starting the server). You can use it, but you are recommended to use components instead.
appConfig.js
This is your custom configuration file. You can name it anything you want.
It contains some basic constant data that your application needs, such as database login and other setup information.
The following is an example of a NoGap
configuration. It requires at least two entries:
baseFolder
app.js
) where you defined all NoGap components.files
publicFolder
(Default = pub/
)NoGap
support (they are not defined as components).lazyLoad
(Default = true)endpointImplementation
(set of options to configure the transport layer)name
(Default = HttpPost
)
HttpPostImpl
in ComponentCommunications.js
"nogap": {
"baseFolder" : "components",
"publicFolder" : "pub",
"files" : [
// list all components here:
// utilities
"ValidationUtil",
// pages for guests
"Guest",
// pages for users
"Main",
"Home"
]
}
This is the standard Node
configuration file. Here you can declare your app's basic metadata and, most importantly, your dependencies.
If you need one of the thousands over thousands of publicly available Node
modules, two steps are required:
dependencies
npm install
Done. Now the new module is available in your code via:
var someModule = require('some-module');
where some-module
is the name you gave it in the package.json file.
Check out NPM JS to see all available modules.
By default, each Client
only receives Client
and Base
definitions. Host
-only code is not available to the client. However, the names of absolute file paths are sent to the client to facilitate perfect debugging; i.e. all stacktraces and the debugger will refer to the correct line inside the actual host-resident component file. If that is of concern to you, let me know, and I'll move up TODO priority of name scrambling, or have a look at ComponentDef
's FactoryDef
, and the corresponding def*
methods yourself.
TODO: Add links + more terms.
Good luck! In case of any questions, feel free to contact me.
FAQs
NoGap is a full-stack (spans Host and Client) JavaScript framework, featuring RPC + simple code sharing + basic asset management + full-stack Promise chains and more...
The npm package nogap receives a total of 7 weekly downloads. As such, nogap popularity was classified as not popular.
We found that nogap demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
RubyGems.org has added a new "maintainer" role that allows for publishing new versions of gems. This new permission type is aimed at improving security for gem owners and the service overall.
Security News
Node.js will be enforcing stricter semver-major PR policies a month before major releases to enhance stability and ensure reliable release candidates.
Security News
Research
Socket's threat research team has detected five malicious npm packages targeting Roblox developers, deploying malware to steal credentials and personal data.