New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

prime-functions

Package Overview
Dependencies
Maintainers
2
Versions
21
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

prime-functions

Advanced Prime Numbers Functions. All functions that you need. Generate primes and process with prime numbers

  • 1.2.2
  • latest
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
3
decreased by-72.73%
Maintainers
2
Weekly downloads
 
Created
Source

Prime Functions (Useful Prime Numbers Functions)

Primes are of the utmost importance to number theorists because they are the building blocks of whole numbers, and important to the world because their odd mathematical properties make them perfect for our current uses. On that matter we've built a library to create and find prime numbers

Features

  • Basic prime number generators
  • Primes' indexes
  • High performance
  • Some special prime arrays
  • Relations with normal integers

Playground

You can play with the functions on prime-functions.truncgil.com

Installation

npm install prime-functions

Usage

const pr = require('prime-functions');
console.log(pr.isPrime(13));  //true

You can simply use the prime-functions on the client side:

<script src="https://cdn.jsdelivr.net/npm/prime-functions/index.min.js"></script>
<script>
    const pr = primeFunctions;
    console.log(pr.isPrime(13));    //true
</script>

Functions

isPrime(number)

Return if a number is Prime Number

let result = pr.isPrime(13);    // true
let result = pr.isPrime(28);    // false
nthPrime(order)

Get nth prime

let result = pr.nthPrime(5);    // 11
indexOfPrime(primeNumber)

Get index of prime number

let result = pr.indexOfPrime(13);    // 5

Index starts from 0

nthPrimesSum(...arguments)
let result = pr.nthPrimesSum(3,5,7);    // 5 + 11 + 17 = 33
nthPrimesTimes(...arguments)
let result = pr.nthPrimesTimes(3,5,7);    // 5 * 11 * 17 = 935
nextPrime(currentPrime)
let result = pr.nextPrime(17);    // 19
prevPrime(currentPrime)
let result = pr.prevPrime(17);    // 13
primeSmallerThan(number)
let result = pr.primeSmallerThan(100);    // 97
primeBiggerThan(number)
let result = pr.primeBiggerThan(100);    // 101
primeDivisors(nonPrimeNumber)
let result = pr.primeDivisors(42);    // [2,3,7]
primeDivisorsSum(nonPrimeNumber)
let result = pr.primeDivisorsSum(42);    // 2 + 3 + 7 = 12
primeDivisorsTimes(nonPrimeNumber)
let result = pr.primeDivisorsTimes(42);    // 2 * 3 * 7 = 42
isMersennePrime(primeNumber)

Checks if a prime is a Mersenne Prime

let result = pr.isMersennePrime(127);    // true
nthMersennePrime(order)

Get nth Mersenne Prime

let result = pr.nthMersennePrime(5);    // 8191
nthMersennePrimeExponents(order)

Get nth Mersenne Prime's exponents

let result = pr.nthMersennePrimeExponents(5);    // 13  - That means 2^13
isPrimeOrDivisors(number)

If the number is prime it returns true, otherwise it returns prime divisors

primesSmallerThan(number)
let result = pr.primesSmallerThan(25);    // [ 2, 3, 5, 7, 11, 13, 17, 19, 23 ]
closestPrime(number)
let result = pr.closestPrime(25);    // 23
randomPrime(minVal, maxVal)
let result = pr.randomPrime(25, 48);    // 31
whatWillThisPrimeBe(primeNumber)
let result = pr.whatWillThisPrimeBe(23);    // It'll strengthen you
nextNPrimes(minVal, n)
let result = pr.nextNPrimes(25, 5);    // [ 29, 31, 37, 41, 43 ]
prevNPrimes(number)
let result = pr.prevNPrimes(25, 5);    // [ 23, 19, 17, 13, 11 ]
primesBetween(number1, number2)
let result = pr.primesBetween(80, 150);    // [ 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149 ]
firstNPrimes(count)
let result = pr.firstNPrimes(7);    // [ 2, 3, 5, 7, 11, 13, 17 ]
digits(number)

helper function

let result = pr.digits(1554);    // 4
sum(numbersArray)

helper function

let result = pr.sum([2,3,4]);    // 9
times(numbersArray)

helper function

let result = pr.times([2,3,4]);    // 24
remainDividedBy(number, divisor)

helper function

let result = pr.remainDividedBy(8,3);    // 2
printExecutionTime()

helper function That should be bottom of the script

pr.printExecutionTime();    // Execution time: 119ms
beautifyInteger()

helper function

pr.beautifyInteger(123123123);    // 123.123.123
reverseNumber(number)

helper function

pr.reverseNumber(123456);    // 654321
integerToText()

helper function

pr.integerToText(1234567890);    // bcdefghija
integerToString(number)

helper function

pr.integerToString(1234567890);    // '1234567890'
integerToArray(number)

helper function

pr.integerToArray(1234567890);    // ['1', '2', '3', '4', '5', '6', '7', '8', '9', '0']
firstNDigits(number, n, returnAsInteger=true)

helper function

Returns number first n digits

pr.firstNDigits(1234567890, 4);    // 1234
lastNDigits(number, n, returnAsInteger=true)

helper function

Returns number last n digits

pr.lastNDigits(1234567890, 4);    // 7890
isEmirp(number)

returns if the given number is emirp.

pr.isEmirp(13);    // true
pr.isEmirp(31);    // true
pr.isEmirp(19);    // false
nthEmirp(number)

returns nth emirp. 1 is the 11

pr.nthEmirp(2);    // 13
pr.nthEmirp(5);    // 37
hasTwinPrime(number, returnItsTwin=true)

check if the prime has a twin

pr.hasTwinPrime(3);    // 5
pr.hasTwinPrime(5);    // [5, 7]
pr.hasTwinPrime(311);   // 313
pr.hasTwinPrime(3, false);   // True
pr.hasTwinPrime(37);    // false
factorial(number)

helper

pr.factorial(3);    // 6
pr.factorial(pr.factorial(3));    // 720
wilsonsTheorem(n, returnWithExplanation=true)

The Wilson's Theorem.

n+1 should be prime number if and only if n! mod(n+1) = n.

returnWithExplanation is the conditions and explanation of Wilson's Theorem.

pr.wilsonsTheorem(6);
/*
{
  formula: 'FORMULA: f(n) = ( 6! mod(6+1) / n ) * ( 6+1 ) + 2  --- CONDITIONS: if 6+1 is prime if and only if 6! mod(6+1) = 6 ',
  result: 7
}
*/

pr.wilsonsTheorem(6, false);    // 7
phi(n)

Euler's phi and also known as totient function.

Function can be used as both phi and totient

pr.totient(1)   // 1
pr.phi(2)       // 1
pr.phi(3)       // 2
pr.phi(4)       // 2
pr.totient(5)   // 4
pr.phi(6)       // 2
pr.phi(7)       // 6
pr.totient(8)   // 4
pr.phi(9)       // 6
pr.phi(10)      // 4
isTruncatable(number)

Check if the given number is Truncatable Prime

pr.isTruncatable(3797); //true
pr.isTruncatable(373);  //true
pr.isTruncatable(23);   //false
truncatableValues(number)

Returns number's Truncatable values

pr.truncatableValues(3797);
/*
{
  leftToRight: [ 3, 37, 379, 3797 ],
  rightToLeft: [ 7, 97, 797, 3797 ]
}
*/
nthTruncatablePrime(n)

Finds the nth Truncatable Prime

pr.nthTruncatablePrime(10);   // 3797
isPanditalPrime(n)

Checks if the given number is Pandigital Prime

pr.isPandigitalPrime(2143);   // true

Keywords

FAQs

Package last updated on 23 Feb 2020

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc