shades
- intro
- playground
- guide
- Traversals
- Folds
- Virtual Lenses
- api
New in v2!
- Rich and fully type-safe Typescript support!
- 0 dependencies!
- < 5kb (gzipped) build!
Watch an Introduction
Shades is a lodash inspired lens-like library.
(Psst! Don't want to learn about lenses? Start with the collection functions to see how you can clean up your Iterable code, or check out the magic of into
).
A lens is a path into an object, which can be used to extract its values, or even "modify" them in place (by creating a new object with the value changed).
When writing immutable code, we very commonly end up with nested data stores, e.g.:
const store = {
users: [
{
name: 'Jack Sparrow',
posts: [
{
title: 'Why is the rum always gone? An analysis of Carribean trade surplus'
}
],
...
},
...
]
}
And updating a nested structure will require heavy usage of the spread operator (or Object.assign
). E.g. To capitalize the title of the first post of the first user, you would write:
const userIdx = 0;
const postIdx = 0;
const capitalize = (string) => {...}
{...store,
users: store.users.map((user, idx) => (
idx === userIdx
? {...user,
posts: user.posts.map((post, idx) =>
idx === postIdx
? {
...post,
title: capitalize(post.title)
}
: post)
}
: user
))
}
This is an enormous amount of obfuscating boiler plate code for a very simple update.
With lenses, we could write this update much more declaratively:
mod('users', userIdx, 'posts', postIdx, 'title')
(capitalize)
(store);
Typings
If you're using TypeScript, you'll benefit from very robust type-checking. For example if we had typed the above as:
mod('users', userIdx, 'pots', postIdx, 'title')(capitalize)(store)
TS will error on store
because it doesn't have an attribute pots
. Similarly,
mod('users', userIdx, 'posts', postIdx, 'title')((x: number) => x + 1)(store);
will error because the type of title
is string
and not number
Try It Out
shades contains a little node playground that you can use to follow along with the guide or generally mess around with it.
You can run it with npx
(which you already have if you're running npm@^5.2.x
):
npx shades
Or the old fashioned way
npm install --global shades
shades
Let's Talk About Lens, Baby
For reference, we will use the following objects:
const jack = {
name: 'Jack Sparrow',
goldMember: false,
posts: [
{
title:
'Why is the rum always gone? An analysis of Carribean trade surplus',
likes: 5
},
{
title: 'Sea Turtles - The Tortoise and the Hair',
likes: 70
}
]
};
const liz = {
name: 'Elizabeth Swan',
goldMember: true,
posts: [
{
title: 'Bloody Pirates - My Life Aboard the Black Pearl',
likes: 10000
},
{
title:
'Guidelines - When YOU need to be disinclined to acquiesce to their request',
likes: 5000
}
]
};
const bill = {
name: 'Bill Turner',
goldMember: false,
posts: [
{
title: 'Bootstraps Bootstraps - UEFI, GRUB and the Linux Kernel',
likes: 3000
}
]
};
const store = {
users: [jack, liz, bill],
byName: {
jack,
liz,
bill
}
};
Baby's first lens
Conceptually, a lens is something that represents a path through an object.
The simplest lens is a string or number path like 'name'
or 0
. Strings represent object properties and numbers represent Array or Object indexes.
get
is the simplest lens consumer. It takes a lens into an object and produces a function that will take an object and produce the focus of that lens (focus = final value referenced by the lens, i.e. name
or posts
). Using the examples from above:
> const getName = get('name')
> getName(jack)
'Jack Sparrow'
or more succinctly:
> get('name')(jack)
'Jack Sparrow'
Multiple lenses can be passed in to get
and they will be composed left-to-right:
> get('users', 0, 'name')(store)
'Jack Sparrow'
This is all well and good, but that 0
is unrealistic. We rarely know which index of an array we need to edit, instead we want to update all elements that match some criterion. Thus we need a way to focus on multiple points in an array (or object).
Baby's first traversal
This is where stuff starts to get interesting.
Traversals split the focus of lenses into multiple focus points. These can be particularly helpful when working with arrays.
The simplest traversal is all
. all
focuses on every element of an array (or every value in an object).
> get('users', all, 'posts')(store)
[
[ { title: 'Why is the rum always gone? An analysis of Carribean trade surplus', likes: 5} ],
[ { title: 'Bloody Pirates - My Life Aboard the Black Pearl', likes: 10000 } ]
]
Note: if you are using the TypeScript bindings, you MUST call all
as a function, e.g. get('users', all(), 'posts')
. It behaves exactly the same way.
Traversals can be used anywhere a lens is used. However, as you can see above, when all
appears in a composition, everything after is applied to every element of a collection, instead of on a single object. In this way, traversals act like prisms:
Multiple traversals can be composed into a single lens. Each traversal in the lens will result to a further level of nesting in the output
> get('users', all, 'posts', all, 'likes')(store)
[[5], [100000]]
Above, we focused on the users
key of the store, then for every user in the users
array we focused on the posts array, and then for every post in THAT array we focused on the likes
key.
all
will always produce an array in the output, and so we got an array for when we traversed over users
, and another nested array when we traversed over posts
. Pretty neat, huh?
Modifications
get
ting data is all well and good, but where shades really shines is performing immutable updates. The good news is everything we have learned up until now translates seamlessly.
Meet mod
. mod
is a lot like get
: it accepts lenses and produces a function. The difference is, before we pass mod
an object to act on, we pass it a function that transforms the focus of the lens. Then we pass it an object, and instead of producing the focus of the object (like get
) it will produce a copy of the entire object, with the focus of the lens transformed by your function.
> const transformer = mod('users', 0, 'posts', 0, 'likes')(likes => likes + 1)
> transformer(store)
{
users: [
{
name: 'Jack Sparrow',
goldMember: false,
posts: [
{
title: 'Why is the rum always gone? An analysis of Carribean trade surplus',
likes: 6,
}
]
},
{ ... },
{ ... }
]
}
This transform was done immutably, so our original store
is unmodified.
mod
also works with traversals:
> mod('users', all, 'posts', all, 'likes')(likes => likes + 1)(store)
{
users: [
{
name: 'Jack Sparrow',
goldMember: false,
posts: [
{
title: 'Why is the rum always gone? An analysis of Carribean trade surplus',
likes: 6,
}
]
},
{
name: 'Elizabeth Swan',
goldMember: true,
posts: [
{
title: 'Bloody Pirates - My Life Aboard the Black Pearl',
likes: 10001,
}
]
},
{ ... }
]
}
Now you're ready to start cooking with gas! If you wanna see an even cooler traversal, check out matching
. Or just check out some of the API below, there's a
lot of really great stuff we didn't even get a chance to touch on.
Epilogue: Folds and Virtual Lenses
You'll be able to get pretty dang far with just the built in lenses and traversals described above. But if you really want to dive down the rabbit hole, there's even more
you can do with lenses.
Folds
Traversals allowed us to focus on multiple elements from a collection at once, but what if we just want to focus on a single element in a collection; one that fits some
criterion. This is a fold. Think of Array::reduce
; folds operate very similarly. There are some built-in folds that should help you get the hang of it. For instance, findBy
:
> get('users', findBy(user => user.name === 'Jack Sparrow'), 'name')
'Jack Sparrow'
There are other folding lenses such as maxBy
, and minBy
(guess what they do). They all support the into
shorthand:
> get('users', findBy({name: includesi('jack')}), 'name')(store)
'Jack Sparrow'
> get('users', findBy('Elizabeth Swan'), 'posts', maxBy('likes'), 'title')
'Bloody Pirates - My Life Aboard the Black Pearl'
Virtual Lenses
Lenses are not magic. They are just objects with a get
and a mod
field. You can create easily create your own; in fact, this is how folds are implemented.
For example, let's say that your data represents temperature in Celsius, but being an American, you only understand Fahrenheit. We just need to create a get
function that takes a temperature in Celsius transforms it to Fahrenheit, and then a function mod
that takes a function from Fahrenheit to Fahrenheit, and produces
a Celsius to Celsius function.
let's start with some conversion functions:
const ftoc = f => (f - 32) / 1.8;
const ctof = c => c * 1.8 + 32;
our get
function is just ctof
(by definition it is a Celsius to Fahrenheit function), but our mod
function is more complicated. We will get an updater that works on Fahrenheit, but we need to produce a Celsius updater. So we will create a function that takes the temperature in Celsius, converts it to Fahrenheit, runs it through the updater, and converts the result back to Celsius:
const inF = {
get: ctof,
mod: ftof => c => ftoc(ftof(ctof(c)))
};
Now we have a lens that will let us view and update temperatures in Celsius as if they are in Fahrenheit
const weather = { temp: 35 }
> get('temp')(weather)
35
> get('temp', inF)(weather)
95
> mod('temp', inF)(x => x + 1)(weather)
{ temp: 35.56 }
> set('temp', inF)(23)(weather)
{ temp: -5 }
For more details on virtual lenses, watch my talk at Reactathon:
A Note on Type Signatures
It's not necessary to fully grok the type signatures when you read them, but if you do want to understand some of the custom types,
they can be found in types/utils.ts
export function into<Fn extends (...a: any[]) => any>(f: Fn): Fn;
export function into<Key extends string>(f: Key): <Obj extends HasKey<Key>>(s: Obj) => Obj[Key];
export function into<Pattern extends object>(p: Pattern): (o: HasPattern<Pattern>) => boolean;
into
is the engine of much of shades' magical goodness. It takes either a string or object
(or function) and turns it into a useful function. All of shades collection functions
will automatically pass their inputs into into
, creating a useful shorthand.
The transformation follows one of the following 3 rules:
- a function is returned as is (easy enough)
- a string or number is converted into a lens accessor with
get
- an object is converted into a predicate function using the function
has
. This one is the most interesting, and
requires some explanation.
In the simplest form, a pattern of keys and values will produce a function that takes a test
value and returns true
if the given test value has at least the equivalent keys and values
of the pattern. Using the store example from above:
> const isGoldMember = into({goldMember: true})
> isGoldMember(jack)
false
> into({goldMember: true, name: "Elizabeth Swan"})(liz)
true
Nested values work just as you'd expect:
> into({jack: {goldMember: false}})(store.byName)
true
Where it REALLY gets interesting is when the values in your pattern are predicate functions.
In this case, the value at that key in the test object is passed to the function, and validation
only continues if that function returns true
> const hasShortTitle = into({title: title => title.length < 50})
> hasShortTitle(jack.posts[0])
false
This pattern is especially useful with lenses and traversals
TypeScript Usage
into('a')({a: 10})
into('b')({a: 10})
into({a: 10})({a: 10})
into({a: 10})({b: 10})
into((x: number) => x + 1)(10)
Tests
it('should use into to create functions', () => {
into('a')({ a: 10 }).should.equal(10);
into({ a: 10 })({ a: 10 }).should.be.true;
into(x => x + 1)(10).should.equal(11);
});
Reducer generators are functions that take into patterns
and produce specialized
reducer functions ((A, S) => A
):
> jack.posts.reduce(maxOf('likes'))
{
title: 'Sea Turtles - The Tortoise and the Hair',
likes: 70
}
export function maxOf<Key extends string>(k: Key): <Item extends HasKey<Key, number>>(acc: Item, current: Item) => Item
export function maxOf<A>(f: (a: A) => number): (acc: A, current: A) => A
A reducer generator that takes either a path or a getter function and producers
a reducer that will find the element in the collection that has the max of that
property
> [{a: 1}, {a: 3}, {a: 2}].reduce(maxOf('a'))
{ a: 3 }
> store.users.reduce(maxOf(user => user.name.length))
{ name: 'Elizabeth Swan', ...}
TypeScript Usage
users[0].posts.reduce(maxOf('likes'))
users[0].posts.reduce(maxOf('title'))
users[0].posts.reduce(maxOf('farts'))
users.reduce(maxOf(user => user.name.length))
users.reduce(maxOf(user => user.name))
Tests
it('should find largest elements', () => {
store.users.reduce(maxOf(user => user.name.length)).should.be.equal(liz)
jack.posts.reduce(maxOf('likes')).likes.should.be.equal(70)
})
export function minOf<Key extends string>(k: Key): <Item extends HasKey<Key, number>>(acc: Item, current: Item) => Item
export function minOf<Item>(f: (a: Item) => number): (acc: Item, current: Item) => Item
The opposite of maxOf
.
export function findOf<Key extends string>(k: Key): <Item extends HasKey<Key>>(acc: Item, item: Item) => Item
export function findOf<Item>(f: (a: Item) => any): (acc: Item, current: Item) => Item
export function findOf<Pattern>(p: Pattern): <Item extends HasPattern<Pattern>>(acc: Item, item: Item) => Item
Takes an into pattern and produces a reducer that returns either the accumulated item
or the current item if it passes the given test.
> store.users.reduce(findOf('goldMember'))
liz
> store.users.reduce(findOf({goldMember: false}))
jack
TypeScript Usage
users.reduce(findOf('name'))
users.reduce(findOf({name: 'butt'}))
users.reduce(findOf({butt: 'name'}))
users.reduce(findOf(user => user.name))
users.reduce(findOf(user => user.butt))
users.map(findOf(user => user.butt))
Tests
it('finds elements given a pattern', () => {
store.users.reduce(findOf('name')).should.be.equal(store.users[0])
store.users.reduce(findOf({name: liz.name})).should.be.equal(liz)
})
export function sumOf<Key extends string>(k: Key): (acc: number, current: HasKey<Key, number>) => number
export function sumOf<A>(f: (a: A) => number): (acc: number, current: A) => number
A reducer generator that takes either a path or a getter function and producers
a reducer that will sum all of the values produced by the getter
> [{a: 1}, {a: 3}, {a: 2}].reduce(sumOf('a'), 0)
6
> liz.posts.reduce(sumOf('likes'))
15000
TypeScript Usage
users[0].posts.reduce(sumOf('likes'), 0)
users[0].posts.reduce(sumOf('title'), 0)
users[0].posts.reduce(sumOf('farts'), 0)
users.reduce(sumOf(user => user.name.length), 0)
users.reduce(sumOf(user => user.name), 0)
Tests
it('should sum all elements specified by pattern', () => {
store.users.reduce(sumOf(user => user.name.length)).should.be.equal(37)
liz.posts.reduce(sumOf('likes')).should.be.equal(15000)
})
export function productOf<Key extends string>(k: Key): (acc: number, current: HasKey<Key, number>) => number
export function productOf<A>(f: (a: A) => number): (acc: number, current: A) => number
A reducer generator that takes either a path or a getter function and producers
a reducer that will multiply all of the values produced by the getter
> [{a: 1}, {a: 30}, {a: 2}].reduce(productOf('a'), 1)
60
> liz.posts.reduce(productOf('likes'))
50000000
TypeScript Usage
users[0].posts.reduce(productOf('likes'), 1)
users[0].posts.reduce(productOf('title'), 1)
users[0].posts.reduce(productOf('farts'), 1)
users.reduce(productOf(user => user.name.length), 1)
users.reduce(productOf(user => user.name), 1)
Tests
it('should multiply all elements specified by pattern', () => {
store.users.reduce(productOf(user => user.name.length)).should.be.equal(1848)
liz.posts.reduce(productOf('likes')).should.be.equal(50000000)
})
export function identity<A>(a: A): A
Identity function. Not much to say about this one. You give it something,
it gives it back. Nice easy no-op for higher order functions.
TypeScript Usage
identity(10)
identity("butts")
Tests
it('just gives stuff back', () => {
identity(10).should.be.equal(10)
identity('hi').should.be.equal('hi')
})
export function flip<A, B, Out>(f: (a: A) => (b: B) => Out): (b: B) => (a: A) => Out
Takes a 2-curried function and flips the order of the arguments
> const lessThanEq = flip(greaterThanEq)
> const first = a => b => a
> const second = flip(first)
TypeScript Usage
flip(always)
Tests
it('flips argument order', () => {
flip(lessThan)(3)(9).should.be.true
flip(sub)(1)(9).should.equal(-8)
})
export function always<A>(a: A): (b: any) => A
A constant function. This is particularly useful when you want
to just produce a value, but are working with higher order functions
that expect to call a function for a result.
TypeScript Usage
always(10)(map)
always('10')(map)
always(10)
Tests
it('should be constant', () => {
const fifteen = always(15)
fifteen(20).should.be.equal(15)
fifteen('asdfasdf').should.be.equal(15)
})
export function not<Key extends string>(k: Key): (obj: HasKey<Key>) => boolean
export function not<A>(a: Fn1<A, any>): Fn1<A, boolean>;
export function not<A, B>(a: Fn2<A, B, any>): Fn2<A, B, boolean>;
export function not<A, B, C>(a: Fn3<A, B, C, any>): Fn3<A, B, C, boolean>;
export function not<A, B, C, D>(a: Fn4<A, B, C, D, any>): Fn4<A, B, C, D, boolean>;
export function not<A, B, C, D, E>(a: Fn5<A, B, C, D, E, any>): Fn5<A, B, C, D, E, boolean>;
export function not<Pattern>(p: Pattern): (obj: HasPattern<Pattern>) => boolean
A function level equivalent of the !
operator. It consumes a function or into pattern, and returns a
function that takes the same arguments, and returns the negation of the output
> const isOdd = not(isEven);
> isOdd(3)
true
> not('goldMember')(jack)
true
> not({name: "Jack Sparrow"})(liz)
true
TypeScript Usage
declare function notFn1(a: number): string
declare function notFn4(a: number, b: string, c: boolean, d: number): string
not(notFn1)
not(notFn4)
not("name")(users[0])
not("butt")(users[0])
Tests
it('should negate functions of various arities', () => {
const isEven = n => n % 2 == 0
const plus = (a, b) => a + b
not(isEven)(3).should.be.true
not(plus)(2, 3).should.be.false
not(plus)(2, -2).should.be.true
})
it('should handle shorthand', () => {
not('goldMember')(jack).should.be.true
not({name: 'Jack Sparrow'})(jack).should.be.false
})
export function and<A, Out>(a?: Fn1<A, Out>, b?: Fn1<A, Out>, c?: Fn1<A, Out>, d?: Fn1<A, Out>, e?: Fn1<A, Out>, f?: Fn1<A, Out>): Fn1<A, Out>
export function and<A, B, Out>(a?: Fn2<A, B, Out>, b?: Fn2<A, B, Out>, c?: Fn2<A, B, Out>, d?: Fn2<A, B, Out>, e?: Fn2<A, B, Out>, f?: Fn2<A, B, Out>): Fn2<A, B, Out>
export function and<A, B, C, Out>(a?: Fn3<A, B, C, Out>, b?: Fn3<A, B, C, Out>, c?: Fn3<A, B, C, Out>, d?: Fn3<A, B, C, Out>, e?: Fn3<A, B, C, Out>, f?: Fn3<A, B, C, Out>): Fn3<A, B, C, Out>
export function and<A, B, C, D, Out>(a?: Fn4<A, B, C, D, Out>, b?: Fn4<A, B, C, D, Out>, c?: Fn4<A, B, C, D, Out>, d?: Fn4<A, B, C, D, Out>, e?: Fn4<A, B, C, D, Out>, f?: Fn4<A, B, C, D, Out>): Fn4<A, B, C, D, Out>
export function and<A, B, C, D, E, Out>(a?: Fn5<A, B, C, D, E, Out>, b?: Fn5<A, B, C, D, E, Out>, c?: Fn5<A, B, C, D, E, Out>, d?: Fn5<A, B, C, D, E, Out>, e?: Fn5<A, B, C, D, E, Out>, f?: Fn5<A, B, C, D, E, Out>): Fn5<A, B, C, D, E, Out>
A function level equivalent of the &&
operator. It consumes an arbitrary number of
functions that take the same argument types and produce booleans, and returns a
single function that takes the same arguments, and returns a truthy value if all of
the functions are truthy (Return value mimics the behavior of &&
)
> and(isEven, greaterThan(3))(6)
true
> [42, 2, 63].filter(and(isEven, greaterThan(3)))
[42]
TypeScript Usage
declare function andFn1(a: number): number
declare function andFn2(a: number, b: string): number
declare function andFn3(a: number, b: string, c: boolean): number
declare function andFn3Bad(a: number, b: string, c: boolean): boolean
and(andFn3, andFn3, andFn3)
and(andFn1, andFn2, andFn3)
and(andFn1, andFn2, identity)
and(andFn1)
and(andFn1, andFn2, andFn3Bad)
Tests
const isEven = n => n % 2 == 0;
const isPositive = n => n > 0;
const plus = (a, b) => a + b
const lt = (a, b) => a < b
const gt = (a, b) => a > b
it('handles multiple functions', () => {
and(isEven, isPositive)(4).should.be.true;
and(isEven, isPositive)(3).should.be.false;
and(isEven, isPositive)(-1).should.be.false
})
it('handles functions with different arities', () => {
and(lt, isEven)(4, 9).should.be.true;
and(lt, isEven)(4, 9).should.be.true;
and(lt, isEven)(3, 9).should.be.false;
})
it('returns the final value or short circuits', () => {
and(isEven, plus)(4, 9).should.equal(13);
and(gt, isEven, plus)(3, 9).should.be.false;
and(lt, sub(3), isEven)(3, 9).should.equal(0);
})
it('execution stops after a false', () => {
const boomMsg = 'boom'
const boom = () => {throw new Error(boomMsg)}
and(always(false), boom)(false).should.be.false
expect(() => and(always(true), boom)(false)).throws(boomMsg)
})
export function or<A, Out>(a?: Fn1<A, Out>, b?: Fn1<A, Out>, c?: Fn1<A, Out>, d?: Fn1<A, Out>, e?: Fn1<A, Out>, f?: Fn1<A, Out>): Fn1<A, Out>
export function or<A, B, Out>(a?: Fn2<A, B, Out>, b?: Fn2<A, B, Out>, c?: Fn2<A, B, Out>, d?: Fn2<A, B, Out>, e?: Fn2<A, B, Out>, f?: Fn2<A, B, Out>): Fn2<A, B, Out>
export function or<A, B, C, Out>(a?: Fn3<A, B, C, Out>, b?: Fn3<A, B, C, Out>, c?: Fn3<A, B, C, Out>, d?: Fn3<A, B, C, Out>, e?: Fn3<A, B, C, Out>, f?: Fn3<A, B, C, Out>): Fn3<A, B, C, Out>
export function or<A, B, C, D, Out>(a?: Fn4<A, B, C, D, Out>, b?: Fn4<A, B, C, D, Out>, c?: Fn4<A, B, C, D, Out>, d?: Fn4<A, B, C, D, Out>, e?: Fn4<A, B, C, D, Out>, f?: Fn4<A, B, C, D, Out>): Fn4<A, B, C, D, Out>
export function or<A, B, C, D, E, Out>(a?: Fn5<A, B, C, D, E, Out>, b?: Fn5<A, B, C, D, E, Out>, c?: Fn5<A, B, C, D, E, Out>, d?: Fn5<A, B, C, D, E, Out>, e?: Fn5<A, B, C, D, E, Out>, f?: Fn5<A, B, C, D, E, Out>): Fn5<A, B, C, D, E, Out>
A function level equivalent of the ||
operator. It consumes an arbitrary number
of functions that take the same argument types and produce truthy values, and returns
a single function that takes the same arguments, and returns a truthy value if any of
the functions produce truthy values (Return value mimics the behavior of ||
)
> or(isEven, greaterThan(3))(5)
true
> or(isEven, greaterThan(3))(1)
false
TypeScript Usage
declare function orFn1(a: number): number
declare function orFn2(a: number, b: string): number
declare function orFn3(a: number, b: string, c: boolean): number
declare function orFn3Bad(a: number, b: string, c: boolean): boolean
or(orFn3, orFn3, orFn3)
or(orFn1, orFn2, orFn3)
or(orFn1, orFn2, identity)
or(orFn1)
or(orFn1, orFn2, orFn3Bad)
Tests
const isEven = n => n % 2 == 0;
const isPositive = n => n > 0;
const plus = (a, b) => a + b
const lt = (a, b) => a < b
const gt = (a, b) => a > b
it('handles multiple functions', () => {
or(isEven, isPositive)(4).should.be.true;
or(isEven, isPositive)(3).should.be.true;
or(isEven, isPositive)(-1).should.be.false
})
it('handles functions with different arities', () => {
or(lt, isEven)(4, 9).should.be.true;
or(lt, isEven)(4, 9).should.be.true;
or(lt, isEven)(3, 9).should.be.true;
or(lt, isEven)(3, 1).should.be.false;
})
it('returns the final value or short circuits', () => {
or(isEven, plus)(3, 9).should.equal(12);
or(gt, isEven, plus)(3, 9).should.equal(12)
or(lt, sub(3), isEven)(3, 9).should.be.true
})
it('execution stops after a true', () => {
const boomMsg = 'boom'
const boom = () => {throw new Error(boomMsg)}
or(always(true), boom)(false).should.be.true
expect(() => or(always(false), boom)(false)).throws(boomMsg)
})
export function fill<P extends object>(pat: P): <T extends FillingPattern<P>>(value: T) => Fill<T, P>
Merging function that can be used to fill potentially undefined holes in an object. Deep merges objects with a preference for the original, so:
fill({a: {b: 10, c: 20}})({a: {c: 30}})
produces:
{a: {b: 10, c: 30}}
Most importantly, this will also update the output type to erase any T | undefined | null
that were filled by the given
pattern. Useful before applying a lens function to ensure that the result will be defined.
TypeScript Usage
fill({a: 10})({a: undefined, b: 5}).a
fill({a: 10})({}).a
get('bestFriend', 'name')(user)
const friendsWithMyself = fill({bestFriend: user})(user)
get('bestFriend', 'name')(friendsWithMyself)
get('bestFriend', 'bestFriend', 'name')(user)
const deepFriendsWithMyself = fill({bestFriend: friendsWithMyself})(user)
get('bestFriend', 'bestFriend', 'name')(deepFriendsWithMyself)
Tests
it('fills in keys on an object', () => {
fill({a: 10})({b: 5}).a.should.equal(10)
fill({a: 10})({b: 5}).b.should.equal(5)
fill({a: 10})({a: null}).a.should.equal(10)
should.not.exist(fill({b: 10})({a: null}).a)
})
it('should not overwrite existing keys', () => {
fill({a: 10})({a: 5}).a.should.equal(5)
fill({a: {b: 10}})({a: 5}).a.should.equal(5)
})
it('should merge nested keys', () => {
const out = fill({a: {b: 10, c: 15}})({a: {c: 20}})
out.a.b.should.be.equal(10)
out.a.c.should.be.equal(20)
})
it('should not overwrite falsey values', () => {
fill({a: 10})({a: false}).a.should.equal(false)
fill({a: 10})({a: 0}).a.should.equal(0)
fill({a: 10})({a: ''}).a.should.equal('')
})
export function has<Pattern>(p: Pattern): (obj: HasPattern<Pattern>) => boolean
has
takes a pattern and transforms it into a predicate function. In the simplest form, it takes a pattern of keys
and values and produces a function that takes a test value and returns true
if the given test value has at least
the equivalent keys and values of the pattern. Using the store example from above:
> const isGoldMember = has({goldMember: true})
> isGoldMember(jack)
false
> has({goldMember: true, name: "Elizabeth Swan"})(liz)
true
Nested values work just as you'd expect:
> has({jack: {goldMember: false}})(store.byName)
true
Where it REALLY gets interesting is when the values in your pattern are predicate functions.
In this case, the value at that key in the test object is passed to the function, and validation
only continues if that function returns true
> const hasShortTitle = has({title: title => title.length < 50})
> hasShortTitle(jack.posts[0])
false
This pattern is especially useful with lenses and traversals
TypeScript Usage
has({a: 1})
has({a: false})
has({a: 1})({a: 10})
has({a: 1})({a: false})
has({a: (n: number) => n > 10})({a: 5})
has({a: (n: number) => n > 10})({a: false})
Tests
it('should handle multiple patterns and nested keys', () => {
has({ a: { b: 2 }, c: 3 })({ a: { b: 2, f: 5 }, c: 3, d: 4 }).should.be.true
});
it('should return false if not true', () => {
has({ a: { b: 2 }, c: 3 })({ a: { b: 6, f: 5 }, d: 4 }).should.be.false
});
it('should handle null values', () => {
has({ a: null })({ a: null }).should.be.true
});
it('should handle scalars', () => {
has('three')('three').should.be.true;
has('three')('four').should.be.false;
has(true)(true).should.be.true;
has(false)(false).should.be.true;
has(true)(false).should.be.false;
has(undefined)(undefined).should.be.true;
has(null)(null).should.be.true;
has(undefined)(null).should.be.false;
has(3)(3).should.be.true;
has(3)(4).should.be.false;
});
it('should handle lists', () => {
has([1, 2])([1, 2]).should.be.true;
has({ a: [1, 2] })({ a: [1, 2], b: 3 }).should.be.true;
});
it('should handle predicate functions', () => {
has(_.isString)('hello').should.be.true;
has(_.isString)(5).should.be.false;
has({ a: _.isString })({ a: 'hello' }).should.be.true;
has({ a: _.isString })({ a: 5 }).should.be.false;
has({ a: n => n % 2 == 1, b: { c: _.isString } })({
a: 5,
b: { c: 'hello' }
}).should.be.true;
has({ a: n => n % 2 == 0, b: { c: _.isString } })({
a: 5,
b: { c: 'hello' }
}).should.be.false
});
it('should handle unbalanced patterns and objects', () => {
has({ a: { b: { c: 12 } } })(null).should.be.false;
has({ a: { b: { c: 12 } } })({ a: { b: null } }).should.be.false;
});
it('should handle binding', () => {
const base = {
IDTag() {
return this.tag;
}
};
const extended = {
...base,
tag: 'hi'
};
has({ IDTag: returns('hi') })(extended).should.be.true;
});
export function greaterThan(a: number): (b: number) => boolean
export function greaterThan(a: string): (b: string) => boolean
Curried function to compare greater than for two values. NOTE: All logical functions
in shades are reversed; i.e. greaterThan(a)(b) === b > a
. This might seem confusing,
but think of it as predicate factories, that take a value n
and produce a function
that tests 'Is this value greater than n
?'
TypeScript Usage
greaterThan(2)
greaterThan('a')
greaterThan('a')('b')
greaterThan('a')(1)
greaterThan({a: 1})
Tests
it('should compare greaterThan', () => {
greaterThan(2)(3).should.be.true;
greaterThan(3)(2).should.be.false;
})
it('should compare strings value', () => {
greaterThan('a')('b').should.be.true;
greaterThan('b')('a').should.be.false;
})
export function lessThan(a: number): (b: number) => boolean
export function lessThan(a: string): (b: string) => boolean
Curried function to compare less than for two values. NOTE: All logical functions
in shades are reversed; i.e. lessThan(a)(b) === b > a
. This might seem confusing,
but think of it as predicate factories, that take a value n
and produce a function
that tests 'Is this value less than n
?'
TypeScript Usage
lessThan(2)
lessThan('a')
lessThan('a')('b')
lessThan('a')(1)
lessThan({a: 1})
Tests
it('should compare lessThan', () => {
lessThan(2)(3).should.be.false;
lessThan(3)(2).should.be.true;
})
it('should compare strings value', () => {
lessThan('a')('b').should.be.false;
lessThan('b')('a').should.be.true;
})
Same as greaterThan
but >=
instead of >
Same as greaterThan
but >=
instead of >
export function toggle(b: boolean): boolean
The !
operator as a function. Takes a boolean and flips the value. Very useful as an updater function:
> mod('byName', jack, 'goldMember')(toggle)(store)
{
byName: {
jack: {
goldMember: true,
...
}
...
}
...
}
TypeScript Usage
toggle(false)
toggle('a')
Tests
it('should toggle values', () => {
toggle(true).should.be.false;
toggle(false).should.be.true;
})
export function returns<A>(a: A): (f: () => A) => boolean
A curried function that takes a value a
of type A
and a function of no arguments that
returns a value of type A
. These two values are then compared for equality.
This is very useful with has
or into
when your test value has
getter functions, and you want to see if those getters produce a certain value:
> const a = {
ID() {
return '10'
}
}
> has({a: returns(10)})(a)
true
TypeScript Usage
returns(10)(() => 10)
returns(10)(() => 'hi')
declare const getID: {
ID(): string
}
has({ID: returns('blah')})(getID)
has({ID: returns(10)})(getID)
Tests
it('works', () => {
returns(10)(() => 10).should.be.true;
returns(7)(() => 10).should.be.false;
})
export function add(a: number): (b: number) => number
Curried +
operator
> add(5)(2)
7
> [1, 2, 3].map(add(5))
[6, 7, 8]
TypeScript Usage
add(1)(3)
add(1)('s')
Tests
it('works', () => {
add(5)(2).should.be.equal(7);
[1, 2, 3].map(add(5)).should.deep.equal([6, 7, 8]);
})
export function sub(a: number): (b: number) => number
Curried -
operator. NOTE: Like the logical functions, sub
is
reversed; i.e. sub(a)(b) === b - a
, so sub(3)
means "Take a number and subtract
3 from it"
> sub(5)(2)
3
> [1, 2, 3].map(sub(5))
[-4, -3, -2]
TypeScript Usage
sub(1)(3)
sub(1)('s')
Tests
it('works', () => {
sub(5)(2).should.be.equal(-3);
[1, 2, 3].map(sub(5)).should.deep.equal([-4, -3, -2]);
})
export function includes(snippet: string): (text: string) => boolean
Reversed version of String::includes
. Takes a snippet, and produces a function that will take a string,
and produce a boolean if that string contains the snippet. Very useful when working with into
TypeScript Usage
includes('hello')('hello')
includes('hello')(false)
Tests
it('checks for inclusion', () => {
includes('he')('hello').should.be.true
includes('hello')('he').should.be.false
})
export function includesi(snippet: string): (text: string) => boolean
Reversed, case-insensitive version of String::includes
. Takes a snippet, and produces a function that will take a string,
and produce a boolean if that string contains the snippet, ignoring case. Very useful when working with into
TypeScript Usage
includesi('hello')('hello')
includesi('hello')(false)
Tests
it('checks for inclusion', () => {
includesi('he')('hello').should.be.true
includesi('hello')('he').should.be.false
})
it('ignores case', () => {
includesi('HE')('hello').should.be.true
includesi('He')('hEllo').should.be.true
includesi('hello')('he').should.be.false
})
get
takes any number of lenses, and returns a function that takes an object and applies
each of those lenses in order to extract the focus from the lens. (If you are using TypeScript,
you'll be pleased to know it's typesafe, and can track the type of lenses and catch many errors).
TypeScript Usage
get('name')(user)
get(0, 'name')(users)
get(0, 'fart')(users)
get('bestFriend')(user)
get('bestFriend', 'name')(user)
Tests
it("is an accessor", () => {
get('name')(jack).should.equal('Jack Sparrow')
})
it("is composable", () => {
get('users', 0, 'name')(store).should.equal('Jack Sparrow')
});
it("extracts matching elements", () => {
get(matching("goldMember"))(store.users).should.deep.equal([liz])
})
it("composes with traversals", () => {
get("users", all, "posts")(store).should.deep.equal([jack.posts, liz.posts, bill.posts])
})
it("preserves structure with traversals", () => {
get("byName", all, "goldMember")(store).should.deep.equal({jack: false, liz: true, bill: false})
})
it("nests traverals in output", () => {
get("users", all, "posts", all, "likes")(store).should.deep.equal([[5, 70], [10000, 5000], [3000]])
})
it("handles folds as lenses", () => {
get("users", 0, "posts", maxBy('likes'), 'likes')(store).should.equal(70)
})
export function all<A>(): Traversal<A>;
all
is the simplest traversal; it simply signifies that this traversal wi
in a collection. It is the lens equivalent of the map
function.
> get('users', all(), 'name')(store)
['Jack Sparrow', 'Elizabeth Swan', 'Bootstrap Bill']
As you can see above, the 'name'
lens didn't apply directly to the array of users, and try to extract
a name
property from the array, but instead mapped it over the array.
If you're not using typescript, you'll find that you can just use the all
function itself as
the traversal, and there's no need to call it:
> set('users', all, 'name')('butt')(store)
{ users: [...] }
TypeScript Usage
get('friends', all<User>(), 'name')(user)
Tests
it('should act as identity with get', () => {
get(all)([1, 2, 3, 4]).should.deep.equal([1, 2, 3, 4]);
get(all)({ a: 1, b: 2, c: 3, d: 4 }).should.deep.equal({ a: 1, b: 2, c: 3, d: 4 });
});
it('should allow multifoci gets', () => {
get('a', all, 'b')({ a: [{ b: 1 }, { b: 2 }] }).should.deep.equal([ 1, 2 ]);
});
it('should allow deep multifoci gets', () => {
const store = {
users: [
{
blog: {
posts: [
{
title: 'Hi'
}
]
}
}
]
};
get('users', all, 'blog', 'posts', all, 'title')(store).should.deep.equal(
[['Hi']]
);
});
it('should allow deep multifoci mods', () => {
const store = {
users: [
{
blog: {
posts: [
{
title: 'Hi'
}
]
}
}
]
};
mod('users', all, 'blog', 'posts', all, 'title')(s => s.toLowerCase())(
store
).users[0].blog.posts[0].title.should.equal('hi');
});
it('should act as map with mod', () => {
assert.deepStrictEqual([2, 3, 4, 5], mod(all)(inc)([1, 2, 3, 4]));
assert.deepStrictEqual(
{ a: 2, b: 3, c: 4, d: 5 },
mod(all)(inc)({ a: 1, b: 2, c: 3, d: 4 })
);
});
it('should compose in the middle of a lens and act as map', () => {
assert.deepStrictEqual(
[{ n: 1, c: 5 }, { n: 2, c: 7 }],
mod(all, 'c')(inc)([{ n: 1, c: 4 }, { n: 2, c: 6 }])
);
});
it('should compose in the middle of multiple lenses', () => {
mod(all, 'c', all)(inc)([
{ n: 1, c: { d: 1, e: 7 } },
{ n: 2, c: { d: 1, e: 7 } }
]).should.deep.equal(
[{ n: 1, c: { d: 2, e: 8 } }, { n: 2, c: { d: 2, e: 8 } }]
);
});
it('should work in function form as well', () => {
Object.entries(all).should.deep.equal(Object.entries(all()))
});
export function matching<Key extends string>(k: Key): Traversal<HasKey<Key>>
export function matching<A>(f: (a: A) => any): Traversal<A>
export function matching<Pattern>(p: Pattern): Traversal<HasPattern<Pattern>>
matching
is the filter
of traversals. It takes an predicate function (or into
pattern) and produces
a lens that will apply to every item in the collection that passes the criterion.
For instance, to get
every user name that is a gold member in our store
example, we could write
> get('users', matching('goldMember'), 'name')(store)
['Elizabeth Swan']
They can be stacked together and used to modify, e.g. to find all the gold members and like only
their posts with more than 10 likes (sounds complicated), all we have to write is:
> mod('users', matching('goldMember'), 'posts', matching({likes: greaterThan(10)}))(inc)(store)
{ users: [...] }
TypeScript Usage
get(matching('goldMember'))(users)
get(matching('goldMember'), 'name')(users)
Tests
const isEven = n => n % 2 == 0;
it('should be able to get matching elements', () => {
get(matching(isEven))([1, 2, 3, 4]).should.deep.equal([2, 4]);
get(matching(isEven))({ a: 1, b: 2, c: 3, d: 4 }).should.deep.equal({ b: 2, d: 4 });
});
it('should be able to set matching elements', () => {
mod(matching(isEven))(inc)([1, 2, 3, 4]).should.deep.equal([1, 3, 3, 5])
mod(matching(isEven))(inc)({ a: 1, b: 2, c: 3, d: 4 }).should.deep.equal({ a: 1, b: 3, c: 3, d: 5 })
});
it('should compose in the middle of a lens', () => {
mod(matching(({ n }) => n % 2 === 0), 'c')(inc)([
{ n: 1, c: 4 },
{ n: 2, c: 6 }
]).should.deep.equal(
[{ n: 1, c: 4 }, { n: 2, c: 7 }]
)
});
it('should compose in the middle of a lens', () => {
mod(
matching(({ n }) => isEven(n)),
'c',
matching(({ d }) => d === 1),
'e'
)(inc)([
{ n: 1, c: 4 },
{ n: 2, c: { a: { d: 1, e: 2 }, b: { d: 5, e: 12 } } }
]).should.deep.equal(
[
{ n: 1, c: 4 },
{ n: 2, c: { a: { d: 1, e: 3 }, b: { d: 5, e: 12 } } }
])
});
it('should handle shorthands', () => {
get(matching({ n: isEven }), 'c', matching('d'), 'e')([
{ n: 1, c: 4 },
{ n: 2, c: { a: { d: true, e: 2 }, b: { d: false, e: 12 } } }
]).should.deep.equal([{ a: 2 }]);
get(matching({ n: isEven }), 'c', matching('d'), 'e')([
{ n: 1, c: 4 },
{ n: 2, c: { a: { d: true, e: 2 }, b: { d: true, e: 12 } } }
]).should.deep.equal([{ a: 2, b: 12 }]);
});
it('should set with shorthands', () => {
set(matching({ n: isEven }), 'c', matching('d'), 'e')(10)([
{ n: 1, c: 4 },
{ n: 2, c: { a: { d: true, e: 2 }, b: { d: false, e: 12 } } }
]).should.deep.equal([
{ n: 1, c: 4 },
{ n: 2, c: { a: { d: true, e: 10 }, b: { d: false, e: 12 } } }
]);
});
export interface FindBy {
<Key extends string>(k: Key): Lens<Collection<HasKey<Key>>, HasKey<Key>>
<A>(f: (a: A) => any): Lens<Collection<A>, A>
<Pattern>(p: Pattern): Lens<Collection<HasPattern<Pattern>>, HasPattern<Pattern>>
of: <A>(pattern: any) => Lens<Collection<A>, A>
}
findBy
is a folding lens that focuses on the element of a collection that matches the
given into
pattern. For example, in our store example, we could find Jack Sparrows
goldMember
status with:
> get('users', findBy({name: contains('Jack')}), 'goldMember')(store)
false
TypeScript Usage
get('friends', findBy.of<User>({name: 'john'}), 'name')(user)
get('friends', findBy.of<User>('goldMember'), 'posts')(user)
get('friends', findBy((user: User) => user.settings), 'posts')(user)
get('friends', findBy((user: User) => user.settings), 'pots')(user)
Tests
it('acts as a reducer', () => {
get('users', findBy({name: 'Jack Sparrow'}), 'name')(store).should.equal('Jack Sparrow')
get('users', findBy('goldMember'), 'name')(store).should.equal('Elizabeth Swan')
})
it('uses of as an alias', () => {
get('users', findBy.of({name: 'Jack Sparrow'}), 'name')(store).should.equal('Jack Sparrow')
get('users', findBy.of('goldMember'), 'name')(store).should.equal('Elizabeth Swan')
})
it('produces undefined when it cant find something', () => {
should.not.exist(get('users', findBy({name: 'frank'}))(store))
})
export interface MinBy {
<Key extends string>(k: Key): Lens<Collection<HasKey<Key>>, HasKey<Key>>
<A>(f: (a: A) => any): Lens<Collection<A>, A>
of: <A>(pattern: any) => Lens<Collection<A>, A>
}
maxBy
is a folding lens that focuses on the element of a collection that has the
maximum value for the given into
pattern. For example, in our store example,
we could find Jack Sparrows most liked post title with:
> get('users', findBy({name: icontains('jack')}), 'posts', maxBy('likes'), 'title')(store)
'Sea Turtles - The Tortoise and the Hair'
TypeScript Usage
get('friends', maxBy.of<User>({name: 'john'}), 'name')(user)
get('friends', maxBy.of<User>('goldMember'), 'posts')(user)
get('friends', maxBy((user: User) => user.settings), 'posts')(user)
get('friends', maxBy((user: User) => user.settings), 'pots')(user)
Tests
it('acts as a reducer', () => {
get('posts', maxBy('likes'), 'title')(jack).should.equal('Sea Turtles - The Tortoise and the Hair')
get('posts', maxBy(post => -post.title.length), 'title')(liz).should.equal('Bloody Pirates - My Life Aboard the Black Pearl')
})
it('uses of as an alias', () => {
get('posts', maxBy.of('likes'), 'title')(jack).should.equal('Sea Turtles - The Tortoise and the Hair')
get('posts', maxBy.of(post => -post.title.length), 'title')(liz).should.equal('Bloody Pirates - My Life Aboard the Black Pearl')
})
export interface MaxBy {
<Key extends string>(k: Key): Lens<Collection<HasKey<Key>>, HasKey<Key>>
<A>(f: (a: A) => any): Lens<Collection<A>, A>
of: <A>(pattern: any) => Lens<Collection<A>, A>
}
minBy
is a folding lens that focuses on the element of a collection that has the
minimum value for the given into
pattern. For example, in our store example,
we could find Jack Sparrows most liked post title with:
> get('users', findBy({name: icontains('jack')}), 'posts', minBy('likes'), 'title')(store)
'Sea Turtles - The Tortoise and the Hair'
TypeScript Usage
get('friends', minBy.of<User>({name: 'john'}), 'name')(user)
get('friends', minBy.of<User>('goldMember'), 'posts')(user)
get('friends', minBy((user: User) => user.settings), 'posts')(user)
get('friends', minBy((user: User) => user.settings), 'pots')(user)
Tests
it('acts as a reducer', () => {
get('posts', minBy('likes'), 'title')(jack).should.equal('Why is the rum always gone? An analysis of Carribean trade surplus')
get('posts', minBy(post => -post.title.length), 'title')(liz).should.equal('Guidelines - When YOU need to be disinclined to acquiesce to their request')
})
it('uses of as an alias', () => {
get('posts', minBy.of('likes'), 'title')(jack).should.equal('Why is the rum always gone? An analysis of Carribean trade surplus')
get('posts', minBy.of(post => -post.title.length), 'title')(liz).should.equal('Guidelines - When YOU need to be disinclined to acquiesce to their request')
})
export function valueOr<T>(dflt: T): Lens<T | undefined | null, T>
Virtual Lens that takes a default value and transforms the focus of the lens from
an optional value into a guaranteed value.
interface A {
first: {
second: {
third?: string;
}
}
}
get('first', 'second', 'third')(aValue)
get('first', 'second', 'third', valueOr('default'))(aValue)
TypeScript Usage
get('bestFriend')(user)
get('bestFriend', valueOr(user))(user)
get(all(), 'bestFriend')(users)
get(all(), 'bestFriend', valueOr(user))(users)
Tests
it('should fill in default values', () => {
should.not.exist(get('bestFriend')(jack))
get('bestFriend', valueOr(jack), 'name')(liz).should.equal('Jack Sparrow')
mod('bestFriend', valueOr(jack), 'name')(s => s.toUpperCase())(liz).bestFriend.name.should.equal('JACK SPARROW')
})
We all love Array::map
, Array::filter
, etc. but what do you do when you have an object, or a Map?
Even if you're just using arrays, defining an arrow function to just extract a property, or test if a
key has a certain value is clunky.
Enter shades. Shades provides collection functions that work polymorphically over many different object
types, and are powered by into
. (And they're pretty fast, too).
> map('name')(store.users)
['jack', 'liz', 'bill']
> map('goldMember')(store.byName)
{
jack: false,
liz: true,
bill: false
}
> filter({name: 'jack'})(store.users)
[jack]
export function filter<K extends string>(k: K): <F extends Collection<HasKey<K>>>(f: F) => F;
export function filter<A>(f: (a: A) => any): <F>(f: F) => F;
export function filter<Pattern>(p: Pattern): <F extends Collection<HasPattern<Pattern>>>(f: F) => F;
Takes an into pattern from A => boolean
and produces a function that takes a Collection
and produces a collection of the same type, with all items that failed the test removed.
> filter(isEven)([1, 2, 3, 4])
[2, 4]
> filter((value, key) => isEven(key) && isOdd(value))({2: 1, 3: 1})
{2: 1}
> filter(isEven)(new Set([1, 2, 3, 4]))
Set({2, 4})
> filter('goldMember')(store.users)
[liz]
> filter({posts: includes({likes: lessThan(10)})})(store.users)
[jack]
TypeScript Usage
filter((user: User) => user.friends.length > 0)(users);
filter((user: User) => user.name)(byName);
filter('name')(users);
filter('name')(byName);
filter('butts')(users);
filter({ name: 'john' })(users);
filter({ name: 'john' })(byName);
filter({
settings: (settings: string) => settings
})(users);
filter({
settings: (settings: Settings) => settings
})(users);
Tests
it('should work on lists', () => {
filter(greaterThan(2))([1, 2, 3]).should.deep.equal([3]);
});
it('should work on objects', () => {
filter(greaterThan(2))({ a: 1, b: 2, c: 3 }).should.deep.equal({ c: 3 })
});
it('should work on Maps', () => {
filter('goldMember')(
new Map(Object.entries(store.byName))
).should.deep.equal(new Map([['liz', liz]]));
});
export function map<K extends string>(k: K): <F extends Container<HasKey<K>>>(f: F) => Functor<F, Unpack<F>, KeyAt<Unpack<F>, K>>;
export function map(i: number): <F extends Container<Indexable>>(f: F) => Functor<F, Unpack<F>, Index<Unpack<F>>>;
export function map<A, B>(f: (a: A) => B): <F extends Container<A>>(f: F) => Functor<F, A, B>;
export function map<Pattern>(p: Pattern): <A extends HasPattern<Pattern>, F extends Container<A>>(f: F) => Functor<F, A, boolean>;
Takes an into pattern from A => B
and produces a function that takes a Container
of A
s and produces the same type of container with B
s
> map(inc)([1, 2, 3, 4])
[2, 3, 4, 5]
> map((value, key) => `${value} was at {key}`)({a: 1, b: 2})
{a: '1 was at a', b: '2 was at b'}
> map((value, key) => `${value} was at {key}`)(new Map([['a', 1], ['b', 2]])
Map {a => '1 was at a', b => '2 was at b'}
> map('goldMember')(store.byName)
{jack: false, liz: true, bill: false}
> map({name: includes('Bill')})(store.users)
[false, false, true]
TypeScript Usage
map('name')(users);
map('name')(byName);
map('not-a-key')(users);
map('not-a-key')(byName);
map('bestFriend')(users)
const usersFriends = map('friends')(users);
map(1)(usersFriends);
map(1)(users);
const usersFriendsByName = map('friends')(byName);
map(2)(usersFriendsByName);
map((x: User) => x.name)(users);
map({ name: 'john', settings: (settings: Settings) => !!settings })(users);
map({ name: 'john', settings: (settings: Settings) => !!settings })(byName);
declare const fetchUsers: Promise<User[]>
map<User[], string[]>(map('name'))(fetchUsers)
declare const userMap: Map<string, User>
declare const userSet: Set<User>
map('name')(userMap)
map('name')(userSet)
Tests
it('should work on lists', () => {
map(inc)([1, 2, 3]).should.deep.equal([2, 3, 4])
});
it('should work on objects', () => {
map(inc)({ a: 1, b: 2, c: 3 }).should.deep.equal({ a: 2, b: 3, c: 4 })
})
it('should receive key as second param', () => {
map((value, key) => value + key)({a: 1}).should.deep.equal({a: '1a'})
})
it('should work on maps', () => {
const input = new Map([['a', 1], ['b', 2], ['c', 3]])
const output = new Map([['a', 2], ['b', 3], ['c', 4]])
map(inc)(input).should.deep.equal(output)
})
it('should work on sets', () => {
const input = new Set([1, 2, 3])
const output = new Set([2, 3, 4])
map(inc)(input).should.deep.equal(output)
})
it('should work on promises', () => {
const p = Promise.resolve({a: 1})
return map('a')(p).should.eventually.equal(1)
})
it('should work with shorthand', () => {
map('a')([{ a: 1 }, { a: 2 }, { a: 3 }]).should.deep.equal([1, 2, 3]);
map('a')({ d: { a: 1 }, c: { a: 2 }, e: { a: 3 } }).should.deep.equal({
d: 1,
c: 2,
e: 3
});
map({ a: 1 })([{ a: 1 }, { a: 2 }, { a: 3 }]).should.deep.equal([
true,
false,
false
]);
});
export function find<Key extends string>(f: Key): <A extends HasKey<Key>>(f: Collection<A>) => (A | undefined);
export function find<A>(f: (a: A) => any): (f: Collection<A>) => (A | undefined);
export function find<Pattern>(p: Pattern): <A extends HasPattern<Pattern>>(f: Collection<A>) => (A | undefined);
Takes an into pattern from A => any
and produces a function that takes a
Collection
returns the first item in the collection that returns
a truthy value for the test (or undefined
if none match)
TypeScript Usage
find('name')(users);
find('fart')(users);
find((user: User) => user.friends)(users);
find((user: User) => user.friends.length > 0)(users);
find({ name: 'barg' })(users);
find({ name: false })(users);
find({ name: (s: string) => !!'barg' })(users);
find({ name: (s: Settings) => !!'barg' })(users);
const a = find({
friends: find({ name: 'silent bob' })
})(users);
a;
find({ settings: { permissions: false } })(users);
find({
settings: { permissions: false }
})(users);
find({
settings: { permissions: (perm: string) => !!perm }
})(users);
find({
settings: { permissions: (perm: boolean) => !!perm }
})(users);
Tests
it('should work on lists', () => {
find(user => user.isLive)([
{ isLive: true, name: 'jack' }
]).name.should.equal('jack');
find('isLive')([{ isLive: true, name: 'jack' }]).name.should.equal(
'jack'
);
find({ name: 'jack' })([{ isLive: true, name: 'jack' }]).isLive.should
.be.true;
});
it('should work on objects', () => {
find(user => user.isLive)({
jack: { isLive: true, name: 'jack' }
}).name.should.equal('jack');
find('isLive')({
jack: { isLive: true, name: 'jack' }
}).name.should.equal('jack');
find({ name: 'jack' })({ jack: { isLive: true, name: 'jack' } }).isLive
.should.be.true;
});
it('should work on Maps', () => {
find('goldMember')(
new Map(Object.entries(store.byName))
).should.deep.equal(liz);
});
it('should work on Sets', () => {
find('goldMember')(
new Set(Object.values(store.byName))
).should.deep.equal(liz);
});
export function some<Key extends string>(f: Key): (f: Collection<HasKey<Key>>) => boolean;
export function some<A>(f: (a: A) => any): (f: Collection<A>) => boolean;
export function some<Pattern>(p: Pattern): (f: Collection<HasPattern<Pattern>>) => boolean;
Takes an into pattern and returns a function that takes a [Collection](#collection-type) and returns true if there is any member in the collection that returns
true` for the test
TypeScript Usage
some('name')(users);
some((user: User) => user.friends)(users);
some((user: User) => user.friends.length > 0)(users);
some({ name: 'barg' })(users);
some({ name: false })(users);
some({ name: (s: string) => !!'barg' })(users);
some({ name: (s: boolean) => !!'barg' })(users);
Tests
it('should work on lists', () => {
some(user => user.isLive)([
{ isLive: true, name: 'jack' }
]).should.be.true
some('isLive')([{ isLive: true, name: 'jack' }]).should.be.true
some({ name: 'jack' })([{ isLive: true, name: 'jack' }]).should.be.true
some({ name: 'john' })([{ isLive: true, name: 'jack' }]).should.be.false
some(user => user.isLive)([{ isLive: true, name: 'jack' }]).should.be.true
some(user => !user.isLive)([{ isLive: true, name: 'jack' }]).should.be.false
});
it('should work on objects', () => {
some(user => user.isLive)({
jack: { isLive: true, name: 'jack' }
}).should.be.true
some('isLive')({
jack: { isLive: true, name: 'jack' }
}).should.be.true
some({ name: 'jack' })({ jack: { isLive: true, name: 'jack' } }).should.be.true;
});
it('should work on Maps', () => {
some('goldMember')(
new Map(Object.entries(store.byName))
).should.be.true
});
it('should work on Sets', () => {
some('goldMember')(
new Set(store.users)
).should.be.true
some({name: s => s.includes('z')})(
new Set(store.users)
).should.be.true
some({name: s => s.includes('x')})(
new Set(store.users)
).should.be.false
});
export function cons<A>(a: A): (as: A[]) => A[]
Consumes an element x
and an array xs
and returns a new array with x
APPENDED to xs
(not prepended, which is more typical with cons
and lists. This
is to make it easier to use in pipelined scenarios)
TypeScript Usage
cons(1)([1, 2, 3]);
cons('a')(['a', 'b', 'c']);
cons(1)(2);
cons(1)(['a', 'b', 'c']);
cons('1')([1, 2, 3]);
Tests
it('should concat lists', () => {
cons(1)([1, 2, 3]).should.deep.equal([1, 2, 3, 1]);
expect(() => cons(1)(2)).to.throw(
'Invalid attempt to spread non-iterable instance'
);
});
export function unshift<A>(a: A): (as: A[]) => A[]
Consumes an element x
and an array xs
and returns a new array with x
prepended to xs
.
TypeScript Usage
unshift(1)([1, 2, 3]);
unshift('a')(['a', 'b', 'c']);
unshift(1)(2);
unshift(1)(['a', 'b', 'c']);
unshift('1')([1, 2, 3]);
Tests
it('should prepend items to a list', () => {
unshift(1)([1, 2, 3]).should.deep.equal([1, 1, 2, 3]);
expect(() => unshift(1)(2)).to.throw(
'Invalid attempt to spread non-iterable instance'
);
});
export function first(s: string): string
export function first<A>(xs: A[]): A
Extracts the first element of a collection
TypeScript Usage
first([1, 3, 4]);
first(users);
first('hi');
first(true);
Tests
it('should extract the first element', () => {
first([1, 2, 3]).should.equal(1);
first('hello').should.equal('h');
should.not.exist(first([]));
});
export function rest<A>(xs: A[]): A[]
Extracts everything from the list except for the head
TypeScript Usage
rest([1, 3, 4]);
rest(users);
rest('hi');
rest(true);
Tests
it('should extract the tail', () => {
rest([1, 2, 3]).should.deep.equal([2, 3]);
rest([]).should.deep.equal([]);
});
export function push<A>(a: A): (as: A[]) => A[]
Alias for cons
export function concat<A>(as: A[]): (bs: A[]) => A[]
Takes two arrays and concatenates the first on to the second.
TypeScript Usage
concat([1, 2, 3])([2, 3]);
concat(['hi'])(['wo']);
concat(['hi'])([1, 2, 3]);
Tests
it('should concatenate lists in reverse order', () => {
concat([1, 2, 3])([2, 3]).should.deep.equal([2, 3, 1, 2, 3]);
})
export function append<A>(as: A[]): (bs: A[]) => A[]
Alias for concat
export function prepend<A>(as: A[]): (bs: A[]) => A[]
Takes two arrays and concatenates the second on to the first.
TypeScript Usage
prepend([1, 2, 3])([2, 3]);
prepend(['hi'])(['wo']);
prepend(['hi'])([1, 2, 3]);
Tests
it('should concatenate lists in lexical order', () => {
prepend([1, 2, 3])([2, 3]).should.deep.equal([1, 2, 3, 2, 3]);
})