Security News
Node.js EOL Versions CVE Dubbed the "Worst CVE of the Year" by Security Experts
Critics call the Node.js EOL CVE a misuse of the system, sparking debate over CVE standards and the growing noise in vulnerability databases.
sparql-engine
Advanced tools
An open-source framework for building SPARQL query engines in Javascript.
Main features:
:warning: In Development :warning:
npm install --save sparql-engine
The sparql-engine
framework allow you to build a custom SPARQL query engine on top of any data storage system.
In short, to support SPARQL queries on top of your data storage system, you need to:
Graph
, which provides access to the data storage system.Dataset
(using your own implementation or the default one).PlanBuilder
and use it to execute SPARQL queries.As a starting point, we provide you with two examples of integration:
This framework represents RDF triples using Javascript Object. You will find below, in Java-like syntax, the "shape" of such object.
interface TripleObject {
subject: string; // The Triple's subject
predicate: string; // The Triple's predicate
object: string; // The Triple's object
}
The sparql-engine
framework uses a pipeline of iterators to execute SPARQL queries. Thus, many methods encountered in this framework needs to return Observable<T>
, i.e., objects that generates items of type T
in a push-based fashion.
An Observable<T>
can be one of the following:
T
T
.T
on a data
event.T
.type Observable<T> = Array<T> | Iterator<T> | EventEmitter<T> | Readable<T>;
Internally, we use the rxjs
package for handling pipeline of iterators.
The first thing to do is to implement a subclass of the Graph
abstract class. A Graph
represents an RDF Graph and is responsible for inserting, deleting and searching for RDF triples in the database.
The main method to implement is Graph.find(triple)
, which is used by the framework to find RDF triples matching
a triple pattern in the RDF Graph.
This method must return an Observable<TripleObject>
, which will be consumed to find matching RDF triples. You can find an example of such implementation in the N3 example.
Similarly, to support the SPARQL UPDATE protocol, you have to provides a graph that implements the Graph.insert(triple)
and Graph.delete(triple)
methods, which insert and delete RDF triple from the graph, respectively. These methods must returns Promises, which are fulfilled when the insertion/deletion operation is completed.
Finally, the sparql-engine
framework also let your customize how Basic graph patterns (BGPs) are evaluated against
the RDF graph. The engine provides a default implementation based on the Graph.find
method and the
Index Nested Loop Join algorithm. However, if you wish to supply your own implementation for BGP evaluation, you just have to implement a Graph
with an evalBGP(triples)
method.
This method must return a Observable<Bindings>
. You can find an example of such implementation in the LevelGraph example.
You will find below, in Java-like syntax, an example subclass of a Graph
.
const { Graph } = require('sparql-engine')
class CustomGraph extends Graph {
/**
* Returns an iterator that finds RDF triples matching a triple pattern in the graph.
* @param triple - Triple pattern to find
* @return An observable which finds RDF triples matching a triple pattern
*/
find (triple: TripleObject, options: Object): Observable<TripleObject> { /* ... */ }
/**
* Insert a RDF triple into the RDF Graph
* @param triple - RDF Triple to insert
* @return A Promise fulfilled when the insertion has been completed
*/
insert (triple: TripleObject): Promise { /* ... */ }
/**
* Delete a RDF triple from the RDF Graph
* @param triple - RDF Triple to delete
* @return A Promise fulfilled when the deletion has been completed
*/
delete (triple: : TripleObject): Promise { /* ... */ }
}
Once you have your subclass of Graph
ready, you need to build a collection of RDF Graphs, called a RDF Dataset. A default implementation, HashMapDataset
, is made available by the framework, but you can build your own by subclassing Dataset
.
const { HashMapDataset } = require('sparql-engine')
const CustomGraph = // import your Graph subclass
const GRAPH_A_IRI = 'http://example.org#graph-a'
const GRAPH_B_IRI = 'http://example.org#graph-b'
const graph_a = new CustomGraph(/* ... */)
const graph_b = new CustomGraph(/* ... */)
// we set graph_a as the Default RDF dataset
const dataset = new HashMapDataset(GRAPH_A_IRI, graph_a)
// insert graph_b as a Named Graph
dataset.addNamedGraph(GRAPH_B_IRI, graph_b)
Finally, to run a SPARQL query on your RDF dataset, you need to use the PlanBuilder
class. It is responsible for parsing SPARQL queries and building a pipeline of iterators to evaluate them.
const { PlanBuilder } = require('sparql-engine')
// Get the name of all people in the Default Graph
const query = `
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {
?s a foaf:Person .
?s rdfs:label ?label .
}`
// Creates a plan builder for the RDF dataset
const builder = new PlanBuilder(dataset)
// Get an iterator to evaluate the query
const iterator = builder.build(query)
// Read results
iterator.subscribe(
bindings => console.log(bindings),
err => console.error(err),
() => console.log('Query evaluation complete!')
)
SPARQL allows custom functions in expressions so that queries can be used on domain-specific data.
The sparql-engine
framework provides a supports for declaring such custom functions.
A SPARQL value function is an extension point of the SPARQL query language that allows URI to name a function in the query processor.
It is defined by an IRI
in a FILTER
, BIND
or HAVING BY
expression.
To register custom functions, you must create a JSON object that maps each IRI
to a Javascript function that takes a variable number of RDFTerms arguments and returns an RDFTerm
.
See the terms
package documentation for more details on how to manipulate RDF terms.
The following shows a declaration of some simple custom functions.
// load the utility functions used to manipulate RDF terms
const { terms } = require('sparql-engine')
// define some custom SPARQL functions
const customFunctions = {
// reverse a RDF literal
'http://example.com#REVERSE': function (rdfTerm) {
const reverseValue = rdfTerm.value.split("").reverse().join("")
return terms.replaceLiteralValue(rdfTerm, reverseValue)
},
// Test if a RDF Luteral is a palindrome
'http://example.com#IS_PALINDROME': function (rdfTerm) {
const result = rdfTerm.value.split("").reverse().join("") === rdfTerm.value
return terms.createBoolean(result)
},
// Test if a number is even
'http://example.com#IS_EVEN': function (rdfTerm) {
if (terms.isNumber(rdfTerm)) {
const result = rdfTerm.value % 2 === 0
return terms.createBoolean(result)
}
return terms.createBoolean(false)
}
}
Then, this JSON object is passed into the constructor of your PlanBuilder.
const builder = new PlanBuilder(dataset, {}, customFunctions)
Now, you can execute SPARQL queries with your custom functions! For example, here is a query that uses our newly defined custom SPARQL functions.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX example: <http://example.com#>
SELECT ?length
WHERE {
?s foaf:name ?name .
# this bind is not critical, but is here for illustrative purposes
BIND(<http://example.com#REVERSE>(?name) as ?reverse)
BIND(STRLEN(?reverse) as ?length)
# only keeps palindromes
FILTER (!example:IS_PALINDROME(?name))
}
GROUP BY ?length
HAVING (example:IS_EVEN(?length))
The sparql-engine
framework provides support for evaluating federated SPARQL queries, using the SERVICE keyword.
As with a Graph
, you simply need to provides an implementation of a ServiceExecutor
, a class used as a building block by the engine to evaluates SERVICE clauses.
The only method that needs to be implemented is the ServiceExecutor._execute
method,
as detailed below.
const { ServiceExecutor } = require('sparql-engine')
class MyServiceExecutor extends ServiceExecutor {
/**
* Constructor
* @param builder - PlanBuilder instance
*/
constructor (builder: PlanBuilder) {}
/**
* Returns an iterator used to evaluate a SERVICE clause
* @param source - Source observable
* @param iri - Iri of the SERVICE clause
* @param subquery - Subquery to be evaluated
* @param options - Execution options
* @return An observable used to evaluate a SERVICE clause
*/
_execute (source: Observable<Bindings>, iri: string, subquery: Object, options: Object): Observable<Bindings> { /* ... */}
}
Once your custom ServiceExecutor is ready, you need to install it on a PlanBuilder
instance.
const { ServiceExecutor } = require('sparql-engine')
// Suppose a custom ServiceExecutor
class CustomServiceExecutor extends ServiceExecutor { /* ... */ }
const builder = new PlanBuilder()
builder.serviceExecutor = new CustomServiceExecutor(builder)
// Then, use the builder as usual to evaluate Federated SPARQL queries
const iterator = builder.build(/* ... */)
// ...
As introduced before, a PlanBuilder
rely on Executors to build the physical query execution plan
of a SPARQL query. If you wish to configure how this plan is built, then you just have to extends the various executors
available. The following table gives you all informations needed about the available executors.
Executors
Base class | Used to handle | PlanBuilder setter |
---|---|---|
BGPExecutor | Basic Graph Patterns | builder.bgpExecutor = ... |
GraphExecutor | SPARQL GRAPH | builder.graphExecutor = ... |
ServiceExecutor | SPARQL Service | builder.serviceExecutor = ... |
AggregateExecutor | SPARQL Aggregates | builder.aggregateExecutor = ... |
UpdateExecutor | SPARQL UPDATE protocol | builder.updateExecutor = ... |
The following example show you how to install your custom executors on a PlanBuilder
instance.
const { BGPExecutor } = require('sparql-engine')
// Suppose a custom BGPExecutor
class CustomBGPExecutor extends BGPExecutor { /* ... */ }
const builder = new PlanBuilder()
builder.bgpExecutor = new CustomBGPExecutor()
// Then, use the builder as usual to evaluate SPARQL queries
const iterator = builder.build(/* ... */)
// ...
To generate the documentation in the docs
director:
git clone https://github.com/Callidon/sparql-engine.git
cd sparql-engine
npm install
npm run doc
FAQs
A framework for building SPARQL query engines in Javascript
The npm package sparql-engine receives a total of 99 weekly downloads. As such, sparql-engine popularity was classified as not popular.
We found that sparql-engine demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Critics call the Node.js EOL CVE a misuse of the system, sparking debate over CVE standards and the growing noise in vulnerability databases.
Security News
cURL and Go security teams are publicly rejecting CVSS as flawed for assessing vulnerabilities and are calling for more accurate, context-aware approaches.
Security News
Bun 1.2 enhances its JavaScript runtime with 90% Node.js compatibility, built-in S3 and Postgres support, HTML Imports, and faster, cloud-first performance.