Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

squint-cljs

Package Overview
Dependencies
Maintainers
1
Versions
142
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

squint-cljs

Squint is an experimental ClojureScript syntax to JavaScript compiler.

  • 0.0.0-alpha.44
  • npm
  • Socket score

Version published
Maintainers
1
Created
Source

Squint

Squint is an experimental ClojureScript syntax to JavaScript compiler.

Squint is not intended as a replacement for ClojureScript but as a tool to target JS for anything you would not use ClojureScript for, for whatever reason: performance, bundle size, ease of interop, etc.

:warning: This project should be considered experimental and may still undergo breaking changes. It's fine to use it for non-critical projects but don't use it in production yet.

Squint was previously called ClavaScript and the name may appear in some places in this README. Please file an issue or PR if you spot one.

Quickstart

Although it's early days, you're welcome to try out squint and submit issues.

$ mkdir squint-test && cd squint-test
$ npm init -y
$ npm install squint-cljs@latest

Create a .cljs file, e.g. example.cljs:

(ns example
  (:require ["fs" :as fs]
            ["url" :refer [fileURLToPath]]))

(println (fs/existsSync (fileURLToPath js/import.meta.url)))

(defn foo [{:keys [a b c]}]
  (+ a b c))

(println (foo {:a 1 :b 2 :c 3}))

Then compile and run (run does both):

$ npx squint run example.cljs
true
6

Run npx squint --help to see all command line options.

Why Squint

Squint lets you write CLJS syntax but emits small JS output, while still having parts of the CLJS standard library available (ported to mutable data structures, so with caveats). This may work especially well for projects e.g. that you'd like to deploy on CloudFlare workers, node scripts, Github actions, etc. that need the extra performance, startup time and/or small bundle size.

Differences with ClojureScript

  • Squint does not protect you in any way from the pitfalls of JS with regards to truthiness, mutability and equality
  • There is no CLJS standard library. The "squint-cljs/core.js" module has similar JS equivalents
  • Keywords are translated into strings
  • Maps, sequences and vectors are represented as mutable objects and arrays
  • Most functions return arrays and objects, not custom data structures
  • Supports async/await:(def x (js/await y)). Async functions must be marked with ^:async: (defn ^:async foo []).
  • assoc!, dissoc!, conj!, etc. perform in place mutation on objects
  • assoc, dissoc, conj, etc. return a new shallow copy of objects
  • println is a synonym for console.log
  • pr-str and prn coerce values to a string using JSON.stringify

Seqs

Squint does not implement Clojure seqs. Instead it uses the JavaScript iteration protocols to work with collections. What this means in practice is the following:

  • seq takes a collection and returns an Iterable of that collection, or nil if it's empty
  • iterable takes a collection and returns an Iterable of that collection, even if it's empty
  • seqable? can be used to check if you can call either one

Most collections are iterable already, so seq and iterable will simply return them; an exception are objects created via {:a 1}, where seq and iterable will return the result of Object.entries.

first, rest, map, reduce et al. call iterable on the collection before processing, and functions that typically return seqs instead return an array of the results.

Memory usage

With respect to memory usage:

  • Lazy seqs in squint are built on generators. They do not cache their results, so every time they are consumed, they are re-calculated from scratch.
  • Lazy seq function results hold on to their input, so if the input contains resources that should be garbage collected, it is recommended to limit their scope and convert their results to arrays when leaving the scope:
(js/global.gc)

(println (js/process.memoryUsage))

(defn doit []
  (let [x [(-> (new Array 10000000)
               (.fill 0)) :foo :bar]
        ;; Big array `x` is still being held on to by `y`:
        y (rest x)]
    (println (js/process.memoryUsage))
    (vec y)))

(println (doit))

(js/global.gc)
;; Note that big array is garbage collected now:
(println (js/process.memoryUsage))

Run the above program with node --expose-gc ./node_cli mem.cljs

JSX

You can produce JSX syntax using the #jsx tag:

#jsx [:div "Hello"]

produces:

<div>Hello</div>

and outputs the .jsx extension automatically.

You can use Clojure expressions within #jsx expressions:

(let [x 1] #jsx [:div (inc x)])

Note that when using a Clojure expression, you escape the JSX context so when you need to return more JSX, use the #jsx once again:

(let [x 1]
  #jsx [:div
         (if (odd? x)
           #jsx [:span "Odd"]
           #jsx [:span "Even"])])

See an example of an application using JSX here (source).

Async/await

squint supports async/await:

(defn ^:async foo [] (js/Promise.resolve 10))

(def x (js/await (foo)))

(println x) ;;=> 10

Roadmap

In arbitrary order, these features are planned:

  • Macros
  • REPL
  • Protocols

Core team

The core team consists of:

License

Squint is licensed under the EPL, the same as Clojure core and Scriptjure. See epl-v10.html in the root directory for more information.

FAQs

Package last updated on 19 Sep 2022

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc