Security News
pnpm 10.0.0 Blocks Lifecycle Scripts by Default
pnpm 10 blocks lifecycle scripts by default to improve security, addressing supply chain attack risks but sparking debate over compatibility and workflow changes.
structurae
Advanced tools
A collection of data structures for high-performance JavaScript applications that includes:
npm i structurae
Import structures as needed:
import { BinaryHeap, BitField, BinaryGrid, GridMixin, RecordArray, SortedArray, SortedMixin, StringView } from 'structurae';
// or
const { BinaryHeap, BitField, BinaryGrid, GridMixin, RecordArray, SortedArray, SortedMixin, StringView } = require('structurae');
BitField uses JavaScript Numbers and BigInts as bitfields to store and operate on data using bitwise operations. By default, BitField operates on 31 bit long bitfield where bits are indexed from least significant to most:
const bitfield = new BitField(29); // 29 === 0b11101
bitfield.get(0);
//=> 1
bitfield.get(1);
//=> 0
bitfield.has(2, 3, 4);
//=> true
You can extend BitField and use your own schema by specifying field names and their respective sizes in bits:
class Person extends BitField {}
Person.fields = [
{ name: 'age', size: 7 },
{ name: 'gender', size: 1 },
];
const person = new Person([20, 1]);
person.get('age');
//=> 20
person.get('gender');
//=> 1
person.set('age', 18);
person.value
//=> 41
person.toObject();
//=> { age: 18, gender: 1 }
You can forgo specifying sizes if your field size is 1 bit:
class Privileges extends BitField {}
Privileges.fields = ['user', 'moderator', 'administrator'];
const privileges = new Privileges(0);
privileges.set('user').set('moderator');
privileges.has('user', 'moderator');
//=> true
privileges.set('moderator', 0).has('moderator');
//=> false
If the total size of your fields exceeds 31 bits, BitField will internally use a BigInt to represent the resulting number, however, you can still use normal numbers to set each field and get their value as a number as well:
class LargeField extends BitField {}
LargeField.fields = [
{ name: 'width', size: 20 },
{ name: 'height', size: 20 },
];
const largeField = new LargeField([1048576, 1048576]);
largeField.value
//=> 1099512676352n
largeField.set('width', 1000).get('width')
//=> 1000
If you have to add more fields to your schema later on, you do not have to re-encode your existing values, just add new fields at the end of your new schema:
class OldPerson extends BitField {}
OldPerson.fields = [
{ name: 'age', size: 7 },
{ name: 'gender', size: 1 },
];
const oldPerson = OldPerson.encode([20, 1]);
//=> oldPerson === 41
class Person extends BitField {}
Person.fields = [
{ name: 'age', size: 7 },
{ name: 'gender', size: 1 },
{ name: 'weight', size: 8 },
];
const newPerson = new Person(oldPerson);
newPerson.get('age');
//=> 20
newPerson.get('weight');
//=> 0
newPerson.set('weight', 100).get('weight');
//=> 100
If you only want to encode or decode a set of field values without creating an instance, you can do so by use static methods
BitField.encode
and BitField.decode
respectively:
class Person extends BitField {}
Person.fields = [
{ name: 'age', size: 7 },
{ name: 'gender', size: 1 },
];
Person.encode([20, 1]);
//=> 41
Person.decode(41);
//=> { age: 20, gender: 1 }
If you don't know beforehand how many bits you need for your field, you can call BitField.getMinSize
with the maximum
possible value of your field to find out:
BitField.getMinSize(100);
//=> 7
class Person extends BitField {}
Person.fields = [
{ name: 'age', size: BitField.getMinSize(100) },
{ name: 'gender', size: 1 },
];
For performance sake, BitField doesn't check the size of values being set and setting values that exceed the specified
field size will lead to undefined behavior. If you want to check whether values fit their respective fields, you can use BitField.isValid
:
class Person extends BitField {}
Person.fields = [
{ name: 'age', size: 7 },
{ name: 'gender', size: 1 },
];
Person.isValid({age: 100});
//=> true
Person.isValid({age: 100, gender: 3});
//=> false
Person.isValid([100, 1]);
//=> true
Person.isValid([100, 3]);
//=> false
BitField#match
(and its static variation BitField.match
) can be used to check values of multiple fields at once:
const person = new Person([20, 1]);
person.match({ age: 20 });
//=> true
person.match({ gender: 1, age: 20 });
//=> true
person.match({ gender: 1, age: 19 });
//=> false
Person.match(person.valueOf(), { gender: 1, age: 20 });
//=> true
If you have to check multiple BitField instances for the same values, create a special matcher with BitField.getMatcher
and use it in the match method, that way each check will require only one bitwise operation and a comparison:
const matcher = Person.getMatcher({ gender: 1, age: 20 });
Person.match(new Person([20, 1]).valueOf(), matcher);
//=> true
Person.match(new Person([19, 1]).valueOf(), matcher);
//=> false
UnweightedAdjacencyMatrix and WeightedAdjacencyMatrix classes implement Adjacency Matrix data structure to handle unweighted and weighted graphs respectively,
both directed and undirected. Graph classes extend Grids which in turn rely on TypedArrays, thus, allowing us to store a whole graph in a single ArrayBuffer.
The classes provide methods to operate on edges (addEdge
, removeEdge
, hasEdge
, inEdges
, outEdges
) as well as to traverse the graphs using BFS or DFS (traverse
)
and find shortest path between edges (path
).
UnweightedAdjacencyMatrix extends BinaryGrid to represent an unweighted graph in the densest possible way: each edge of a graph is represented as a single bit in an underlying ArrayBuffer. For example, to represent a graph with 80 nodes as an Adjacency Matrix we need 80 * 80 bits or 800 bytes. UnweightedAdjacencyMatrix will will create an ArrayBuffer of that size, "view" it as Uint16Array (of length 400) and operate on edges using bitwise operations.
graph = new UnweightedAdjacencyMatrix({ size: 6, directed: true });
graph.addEdge(0, 1)
.addEdge(0, 2)
.addEdge(0, 3)
.addEdge(2, 4)
.addEdge(2, 5);
graph.hasEdge(0, 1);
//=> true
graph.hasEdge(0, 4);
//=> false
graph.outEdges(2);
//=> [4, 5]
graph.inEdges(2);
//=> [0]
[...graph.traverse(false, 0)]; // BFS starting from vertex 0
//=> [0, 1, 2, 3, 4, 5]
[...graph.traverse(true, 0)]; // DFS starting from vertext 0
//=> [0, 3, 2, 5, 4, 1]
graph.path(0, 5);
//=> [0, 2, 5]
graph.isAcyclic();
//=> true
graph.topologicalSort();
//=> [0, 3, 2, 5, 4, 1]
WeightedAdjacencyMatrix extends Grid (for directed graphs) or SymmetricGrid (for undirected) to handle weighted graphs. As UnweightedAdjacencyMatrix it stores all edges in a single ArrayBuffer and offers the same API:
const WeightedAdjacencyMatrix = WeightedAdjacencyMatrixMixin(Int32Array, true);
// creates a class for directed graphs that use Int32Array for edge weights
graph = new WeightedAdjacencyMatrix({ size: 6, pad: -1 });
graph.addEdge(0, 1, 3)
.addEdge(0, 2, 2)
.addEdge(0, 3, 1)
.addEdge(2, 4, 8)
.addEdge(2, 5, 6);
graph.hasEdge(0, 1);
//=> true
graph.get(0, 1);
//=> 3
graph.hasEdge(0, 5);
//=> false
graph.get(0, 5);
//=> -1
graph.set(0, 1, 4).get(0, 1);
//=> 4
graph.path(0, 5); // get shortest path from 0 to 5
//=> [0, 2, 5]
graph.addEdge(3, 5, 1); // add edge to create a shorter path through 3
graph.path(0, 5);
//=> [0, 3, 5]
For path finding WeightedAdjacencyMatrix uses DFS based search for acyclic graphs, Dijkstra for graph with no negative edges, and
Bellman-Ford for all other cases. You can choose the algorithm for a particular search by supplying extra arguments to the path
method:
graph.path(0, 5); // uses Bellman-Ford by default, complexity O(V * E)
graph.path(0, 5, true); // the graph is acyclic, uses DFS, O (V + E)
graph.path(0, 5, false, true); // the graph might have cycles, but has no negative edges, uses Dijkstra, O (E + V * Log V)
BinaryGrid creates a grid or 2D matrix of bits and provides methods to operate on it:
const bitGrid = new BinaryGrid({ rows: 2, columns: 8 });
bitGrid.set(0, 0).set(0, 2).set(0, 5);
bitGrid.get(0, 0);
//=> 1
bitGrid.get(0, 1);
//=> 0
bitGrid.get(0, 2);
//=> 1
bitGrid.getRow(0);
//=> [ 1, 0, 1, 0, 0, 1, 0, 0 ]
bitGrid.getColumn(0);
//=> [ 1, 0 ]
BinaryGrid packs bits into numbers like BitField and holds them in an ArrayBuffer, thus occupying the smallest possible space.
Grid extends a provided indexed collection class (Array or TypedArrays) to efficiently handle 2 dimensional data without creating nested arrays. Grid "unrolls" nested arrays into a single array and pads its "columns" to the nearest power of 2 in order to employ quick lookups with bitwise operations.
const ArrayGrid = GridMixin(Array);
// create a grid of 5 rows and 4 columns filled with 0
const grid = new ArrayGrid({rows: 5, columns: 4 });
grid.length
//=> 20
grid[0]
//=> 0
// send data as the second parameter to instantiate a grid with data:
const dataGrid = new ArrayGrid({rows: 5, columns: 4 }, [1, 2, 3, 4, 5, 6, 7, 8]);
grid.length
//=> 20
grid[0]
//=> 0
// you can change dimensions of the grid by setting columns number at any time:
dataGrid.columns = 2;
You can get and set elements using their row and column indexes:
grid
//=> ArrayGrid [1, 2, 3, 4, 5, 6, 7, 8]
grid.get(0, 1);
//=> 2
grid.set(0, 1, 10);
grid.get(0, 1);
//=> 10
// use `getIndex` to get an array index of an element at given coordinates
grid.getIndex(0, 1);
//=> 1
// use `getCoordinates` to find out row and column indexes of a given element by its array index:
grid.getCoordinates(0);
//=> { row: 0, column: 0 }
grid.getCoordinates(1);
//=> { row: 0, column: 1 }
A grid can be turned to and from an array of nested arrays using respectively Grid.fromArrays
and Grid#toArrays
methods:
const grid = ArrayGrid.fromArrays([[1,2], [3, 4]]);
//=> ArrayGrid [ 1, 2, 3, 4 ]
grid.get(1, 1);
//=> 4
// if arrays are not the same size or their size is not equal to a power two, Grid will pad them with 0 by default
// the value for padding can be specified as the second argument
const grid = ArrayGrid.fromArrays([[1, 2], [3, 4, 5]]);
//=> ArrayGrid [ 1, 2, 0, 0, 3, 4, 5, 0 ]
grid.get(1, 1);
//=> 4
grid.toArrays();
//=> [ [1, 2], [3, 4, 5] ]
// you can choose to keep the padding values
grid.toArrays(true);
//=> [ [1, 2, 0, 0], [3, 4, 5, 0] ]
SymmetricGrid is a Grid that offers a more compact way of encoding symmetric or triangular square matrices using half as much space.
const grid = new ArrayGrid({rows: 100, columns: 100 });
grid.length;
//=> 12800
const symmetricGrid = new SymmetricGrid({ rows: 100 });
symmetricGrid.length;
//=> 5050
Since the grid is symmetric, it returns the same value for a given pair of coordinates regardless of their position:
symmetricGrid.set(0, 5, 10);
symmetricGrid.get(0, 5);
//=> 10
symmetricGrid.get(5, 0);
//=> 10
Implements a fast algorithm to manage availability of objects in an object pool.
// create a pool of 1600 indexes
const pool = new Pool(100 * 16);
// get the next available index and make it unavailable
pool.get();
//=> 0
pool.get();
//=> 1
// set index available
pool.free(0);
pool.get();
//=> 0
pool.get();
//=> 2
RecordArray extends DataView to use ArrayBuffer as an array of records or C-like structs. Records can contain fields of any type supported by DataView plus strings. For a string, the maximum size in bytes should be defined.
// create an array of 20 records where each has 'age', 'score', and 'name' fields
const people = new RecordArray([
{ name: 'age', type: 'Uint8' },
{ name: 'score', type: 'Float32' },
{ name: 'name', type: 'String', size: 10 },
], 20);
// get the 'age' field value for the first struct in the array
people.get(0, 'age');
//=> 0
// set the 'age' and 'score' field values for the first struct
people.set(0, 'age', 10).set(0, 'score', 5.0);
people.toObject(0);
//=> { age: 10, score: 5.0, name: '' }
The String type is handled with StringView. You can use its methods to convert them to and from strings.
people.get(0, 'name');
//=> StringView(10) [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
const name = StringView.fromString('Smith');
people.set(0, name).get(0, 'name');
//=> StringView(10) [83, 109, 105, 116, 104, 0, 0, 0, 0, 0]
people.get(0, 'name').toString();
//=> Smith
BinaryHeap extends built-in Array to implement the Binary Heap data structure. All the mutating methods (push, shift, splice, etc.) do so while maintaining the valid heap structure. By default, BinaryHeap implements min-heap, but it can be changed by providing a different comparator function:
class MaxHeap extends BinaryHeap {}
MaxHeap.compare = (a, b) => b - a;
In addition to all array methods, BinaryHeap provides a few methods to traverse or change the heap:
const heap = new BinaryHeap(10, 1, 20, 3, 9, 8);
heap[0]
//=> 1
heap.left(0); // the left child of the first (minimal) element of the heap
//=> 3
heap.right(0); // the right child of the first (minimal) element of the heap
//=> 8
heap.parent(1); // the parent of the second element of the heap
//=> 1
heap.replace(4) // returns the first element and adds a new element in one operation
//=> 1
heap[0]
//=> 3
heap[0] = 6;
// BinaryHeap [ 6, 4, 8, 10, 9, 20 ]
heap.update(0); // updates the position of an element in the heap
// BinaryHeap [ 4, 6, 8, 10, 9, 20 ]
SortedCollection extends a given built-in indexed collection with methods to efficiently handle sorted data.
const SortedInt32Array = SortedMixin(Int32Array);
To create a sorted collection from unsorted array-like objects or items use from
and of
static methods respectively:
SortedInt32Array.from(unsorted);
//=> SortedInt32Array [ 2, 3, 4, 5, 9 ]
SortedInt32Array.of(8, 5, 6);
//=> SortedInt32Array [ 5, 6, 8 ]
new SortedInt32Array
behaves the same way as new Int32Array
and should be used with already sorted elements:
new SortedInt32Array(...[ 1, 2, 3, 4, 8 ]);
//=> SortedInt32Array [ 1, 2, 3, 4, 8 ];
new SortedInt32Array(2,3,4);
//=> SortedInt32Array [ 2, 3, 4 ];
A custom comparison function can be specified on the collection instance to be used for sorting:
//=> SortedInt32Array [ 2, 3, 4, 5, 9 ]
sortedInt32Array.compare = (a, b) => (a > b ? -1 : a < b ? 1 : 0);
sortedInt32Array.sort();
//=> SortedInt32Array [ 9, 5, 4, 3, 2 ]
SortedCollection supports all the methods of its base class:
//=> SortedInt32Array [ 2, 3, 4, 5, 9 ]
sortedInt32Array.slice(0, 2)
//=> SortedInt32Array [ 2, 3 ]
sortedInt32Array.set([0, 0, 1])
//=> SortedInt32Array [ 0, 0, 1, 5, 9 ]
indexOf
and includes
use binary search that increasingly outperforms the built-in methods as the size of the collection grows.
SortedCollection provides isSorted
method to check if the collection is sorted,
and range
method to get elements of the collection whose values are between the specified range:
//=> SortedInt32Array [ 2, 3, 4, 5, 9 ]
sortedInt32Array.range(3, 5);
// => SortedInt32Array [ 3, 4, 5 ]
sortedInt32Array.range(undefined, 4);
// => SortedInt32Array [ 2, 3, 4 ]
sortedInt32Array.range(4);
// => SortedInt32Array [ 4, 5, 8 ]
// set `subarray` to `true` to use `TypedArray#subarray` for the return value instead of copying it with slice:
sortedInt32Array.range(3, 5, true).buffer === sortedInt32Array.buffer;
// => true;
SortedCollection also provides a set of functions to perform common set operations and find statistics of any sorted array-like objects without converting them to sorted collection. Check API documentation for more information.
SortedArray extends SortedCollection using built-in Array.
SortedArray supports all the methods of Array as well as those provided by SortedCollection. The methods that change the contents of an array do so while preserving the sorted order:
sortedArray.push(1);
//=> SortedArray [ 1, 2, 3, 4, 5, 9 ]
sortedArray.unshift(8);
//=> SortedArray [ 1, 2, 3, 4, 5, 8, 9 ]
sortedArray.splice(0, 2, 6);
//=> SortedArray [ 3, 4, 5, 6, 8, 9 ]
uniquify
can be used to remove duplicating elements from the array:
const a = SortedArray.from([ 1, 1, 2, 2, 3, 4 ]);
a.uniquify();
//=> SortedArray [ 1, 2, 3, 4 ]
If the instance property unique
of an array is set to true
, the array will behave as a set and avoid duplicating elements:
const a = new SortedArray();
a.unique = true;
a.push(1);
//=> 1
a.push(2);
//=> 2
a.push(1);
//=> 2
a
//=> SortedArray [ 1, 2 ]
Encoding API (available both in modern browsers and Node.js) allows us to convert JavaScript strings to
(and from) UTF-8 encoded stream of bytes represented by a Uint8Array. StringView extends Uint8Array with string related methods
and relies on Encoding API internally for conversions.
You can use StringView.fromString
to create an encoded string, and StringView#toString
to convert it back to a string:
const stringView = StringView.fromString('abc😀a');
//=> StringView [ 97, 98, 99, 240, 159, 152, 128, 97 ]
stringView.toString();
//=> 'abc😀a'
stringView == 'abc😀a';
//=> true
While the array itself holds code points, StringView provides methods to operate on characters of the underlying string:
const stringView = StringView.fromString('abc😀');
stringView.length; // length of the view in bytes
//=> 8
stringView.size; // the amount of characters in the string
//=> 4
stringView.charAt(0); // get the first character in the string
//=> 'a'
stringView.charAt(3); // get the fourth character in the string
//=> '😀'
[...stringView.characters()] // iterate over characters
//=> ['a', 'b', 'c', '😀']
stringView.substring(0, 4);
//=> 'abc😀'
StringView also offers methods for searching and in-place changing the underlying string without decoding:
const stringView = StringView.fromString('abc😀a');
const searchValue = StringView.fromString('😀');
stringView.search(searchValue); // equivalent of String#indexOf
//=> 3
const replacement = StringView.fromString('d');
stringView.replace(searchValue, replacement).toString();
//=> 'abcda'
stringView.reverse().toString();
//=> 'adcba'
MIT © Maga D. Zandaqo
FAQs
Data structures for performance-sensitive modern JavaScript applications.
The npm package structurae receives a total of 31 weekly downloads. As such, structurae popularity was classified as not popular.
We found that structurae demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
pnpm 10 blocks lifecycle scripts by default to improve security, addressing supply chain attack risks but sparking debate over compatibility and workflow changes.
Product
Socket now supports uv.lock files to ensure consistent, secure dependency resolution for Python projects and enhance supply chain security.
Research
Security News
Socket researchers have discovered multiple malicious npm packages targeting Solana private keys, abusing Gmail to exfiltrate the data and drain Solana wallets.