Product
Socket Now Supports uv.lock Files
Socket now supports uv.lock files to ensure consistent, secure dependency resolution for Python projects and enhance supply chain security.
A faster CSV parser in 5KB (min) (MIT Licensed)
uDSV is a fast JS library for parsing well-formed CSV strings, either from memory or incrementally from disk or network. It is mostly RFC 4180 compliant, with support for quoted values containing commas, escaped quotes, and line breaks¹. The aim of this project is to handle the 99.5% use-case without adding complexity and performance trade-offs to support the remaining 0.5%.
¹ Line breaks (\n
,\r
,\r\n
) within quoted values must match the row separator.
What does uDSV pack into 5KB?
string
, number
, boolean
, date
, json
''
, 'null'
, 'NaN'
Of course, most of these are table stakes for CSV parsers :)
Is it Lightning Fast™ or Blazing Fast™?
No, those are too slow! uDSV has Ludicrous Speed™; it's faster than the parsers you recognize and faster than those you've never heard of.
On a Ryzen 7 ThinkPad, Linux v6.4.11, and NodeJS v20.6.0, a diverse set of benchmarks show a 1x-5x performance boost relative to Papa Parse. Papa Parse is used as a reference not because it's the fastest, but due to its outsized popularity, battle-testedness, and some external validation of its performance claims.
Most CSV parsers have one happy/fast path -- the one without quoted values, without value typing, and using the default settings & output format. Once you're off that path, you can generally throw their self-promoting benchmarks in the trash. In contrast, uDSV remains fast with all datasets and options; its happy path is every path.
For way too many synthetic and real-world benchmarks, head over to /bench...and don't forget your coffee!
┌───────────────────────────────────────────────────────────────────────────────────────────────┐
│ uszips.csv (6 MB, 18 cols x 34K rows) │
├────────────────────────┬────────┬─────────────────────────────────────────────────────────────┤
│ Name │ Rows/s │ Throughput (MiB/s) │
├────────────────────────┼────────┼─────────────────────────────────────────────────────────────┤
│ uDSV │ 782K │ ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 140 │
│ csv-simple-parser │ 682K │ ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 122 │
│ achilles-csv-parser │ 469K │ ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 83.8 │
│ d3-dsv │ 433K │ ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 77.4 │
│ csv-rex │ 346K │ ░░░░░░░░░░░░░░░░░░░░░░░░░ 61.9 │
│ PapaParse │ 305K │ ░░░░░░░░░░░░░░░░░░░░░░ 54.5 │
│ csv42 │ 296K │ ░░░░░░░░░░░░░░░░░░░░░ 52.9 │
│ csv-js │ 285K │ ░░░░░░░░░░░░░░░░░░░░░ 50.9 │
│ comma-separated-values │ 258K │ ░░░░░░░░░░░░░░░░░░░ 46.1 │
│ dekkai │ 248K │ ░░░░░░░░░░░░░░░░░░ 44.3 │
│ CSVtoJSON │ 245K │ ░░░░░░░░░░░░░░░░░░ 43.8 │
│ csv-parser (neat-csv) │ 218K │ ░░░░░░░░░░░░░░░░ 39 │
│ ACsv │ 218K │ ░░░░░░░░░░░░░░░░ 39 │
│ SheetJS │ 208K │ ░░░░░░░░░░░░░░░ 37.1 │
│ @vanillaes/csv │ 200K │ ░░░░░░░░░░░░░░░ 35.8 │
│ node-csvtojson │ 165K │ ░░░░░░░░░░░░ 29.4 │
│ csv-parse/sync │ 125K │ ░░░░░░░░░ 22.4 │
│ @fast-csv/parse │ 78.2K │ ░░░░░░ 14 │
│ jquery-csv │ 55.1K │ ░░░░ 9.85 │
│ but-csv │ --- │ Wrong row count! Expected: 33790, Actual: 1 │
│ @gregoranders/csv │ --- │ Invalid CSV at 1:109 │
│ utils-dsv-base-parse │ --- │ unexpected error. Encountered an invalid record. Field 17 o │
└────────────────────────┴────────┴─────────────────────────────────────────────────────────────┘
npm i udsv
or
<script src="./dist/uDSV.iife.min.js"></script>
A 150 LoC uDSV.d.ts TypeScript def.
import { inferSchema, initParser } from 'udsv';
let csvStr = 'a,b,c\n1,2,3\n4,5,6';
let schema = inferSchema(csvStr);
let parser = initParser(schema);
// native format (fastest)
let stringArrs = parser.stringArrs(csvStr); // [ ['1','2','3'], ['4','5','6'] ]
// typed formats (internally converted from native)
let typedArrs = parser.typedArrs(csvStr); // [ [1, 2, 3], [4, 5, 6] ]
let typedObjs = parser.typedObjs(csvStr); // [ {a: 1, b: 2, c: 3}, {a: 4, b: 5, c: 6} ]
let typedCols = parser.typedCols(csvStr); // [ [1, 4], [2, 5], [3, 6] ]
Nested/deep objects can be re-constructed from column naming via .typedDeep()
:
// deep/nested objects (from column naming)
let csvStr2 = `
_type,name,description,location.city,location.street,location.geo[0],location.geo[1],speed,heading,size[0],size[1],size[2]
item,Item 0,Item 0 description in text,Rotterdam,Main street,51.9280712,4.4207888,5.4,128.3,3.4,5.1,0.9
`.trim();
let schema2 = inferSchema(csvStr2);
let parser2 = initParser(schema2);
let typedDeep = parser2.typedDeep(csvStr2);
/*
[
{
_type: 'item',
name: 'Item 0',
description: 'Item 0 description in text',
location: {
city: 'Rotterdam',
street: 'Main street',
geo: [ 51.9280712, 4.4207888 ]
},
speed: 5.4,
heading: 128.3,
size: [ 3.4, 5.1, 0.9 ],
}
]
*/
CSP Note:
uDSV uses dynamically-generated functions (via new Function()
) for its .typed*()
methods.
These functions are lazy-generated and use JSON.stringify()
code-injection guards, so the risk should be minimal.
Nevertheless, if you have strict CSP headers without unsafe-eval
, you won't be able to take advantage of the typed methods and will have to do the type conversion from the string tuples yourself.
uDSV has no inherent knowledge of streams.
Instead, it exposes a generic incremental parsing API to which you can pass sequential chunks.
These chunks can come from various sources, such as a Web Stream or Node stream via fetch()
or fs
, a WebSocket, etc.
Here's what it looks like with Node's fs.createReadStream():
let stream = fs.createReadStream(filePath);
let parser = null;
let result = null;
stream.on('data', (chunk) => {
// convert from Buffer
let strChunk = chunk.toString();
// on first chunk, infer schema and init parser
parser ??= initParser(inferSchema(strChunk));
// incremental parse to string arrays
parser.chunk(strChunk, parser.stringArrs);
});
stream.on('end', () => {
result = p.end();
});
...and Web streams in Node, or Fetch's Response.body:
let stream = fs.createReadStream(filePath);
let webStream = Stream.Readable.toWeb(stream);
let textStream = webStream.pipeThrough(new TextDecoderStream());
let parser = null;
for await (const strChunk of textStream) {
parser ??= initParser(inferSchema(strChunk));
parser.chunk(strChunk, parser.stringArrs);
}
let result = parser.end();
The above examples show accumulating parsers -- they will buffer the full result
into memory.
This may not be something you want (or need), for example with huge datasets where you're looking to get the sum of a single column, or want to filter only a small subset of rows.
To bypass this auto-accumulation behavior, simply pass your own handler as the third argument to parser.chunk()
:
// ...same as above
let sum = 0;
let reducer = (rows) => {
for (let i = 0; i < rows.length; i++) {
sum += rows[i][3]; // sum fourth column
}
};
for await (const strChunk of textStream) {
parser ??= initParser(inferSchema(strChunk));
parser.chunk(strChunk, parser.typedArrs, reducer); // typedArrs + reducer
}
parser.end();
FAQs
A small, fast CSV parser
We found that udsv demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 0 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Product
Socket now supports uv.lock files to ensure consistent, secure dependency resolution for Python projects and enhance supply chain security.
Research
Security News
Socket researchers have discovered multiple malicious npm packages targeting Solana private keys, abusing Gmail to exfiltrate the data and drain Solana wallets.
Security News
PEP 770 proposes adding SBOM support to Python packages to improve transparency and catch hidden non-Python dependencies that security tools often miss.