Zod
if you're happy and you know it, star this repo ⭐
Sept 17 — Zod 2 is now in beta!
You should be able to upgrade from v1 to v2 without any breaking changes to your code. Zod 2 is recommended for all new projects.
npm install zod@beta
yarn add zod@beta
Here are some of the new features.
- Transformers! These let you provide default values, do casting/coercion, and a lot more. Read more here: Transformers
- Asynchronous refinements and new
.parseAsync
and .safeParseAsync
methods. Read more here: Refinements - Schema parsing now returns a deep clone of the data you pass in (instead of the exact value you pass in)
- Object schemas now strip unknown keys by default. There are also new object methods:
.passthrough()
, .strict()
, and .catchall()
. Read more here: Objects
In almost all cases, you'll be able to upgrade to Zod 2 without changing any code. Here are some of the (very minor) breaking changes:
- Parsing now returns a deep clone of the data you pass in. Previously it returned the exact same object you passed in.
- Relatedly, Zod no longer supports cyclical data. Recursive schemas are still supported, but Zod can't properly parse nested objects that contain cycles.
- Object schemas now strip unknown keys by default, instead of throwing an error
- Optional and nullable schemas are now represented with the dedicated ZodOptional and ZodNullable classes, instead of using ZodUnion.
Aug 30 — zod@1.11 was released with lots of cool features!
What is Zod
Zod is a TypeScript-first schema declaration and validation library. I'm using the term "schema" to broadly refer to any data type/structure, from a simple string
to a complex nested object.
Zod is designed to be as developer-friendly as possible. My goal is to eliminate duplicative type declarations wherever possible. With Zod, you declare a validator once and Zod will automatically infer the static TypeScript type. It's easy to compose simpler types into complex data structures.
Some other great aspects:
- Zero dependencies
- Plain JavaScript: works in browsers and Node.js
- Tiny: 8kb minified + zipped
- Immutability: methods (i.e.
.optional()
return a new instance - Concise, chainable interface
- Functional approach: parse, don't validate
- Works with plain JavaScript too! You don't need to use TypeScript.
I work on Zod in my free time, so if you're making money from a product that is built with Zod, I'd massively appreciate sponsorship at any level. For solo devs, I recommend the Chipotle Bowl tier or the Cup of Coffee tier. If you're making money from a product you built using Zod, consider the [Startup tier](Cup of Coffee tier). You can learn more about the tiers at github.com/sponsors/vriad.
To get your name + Twitter + website here, sponsor Zod at the Freelancer or Consultancy tier.
Table of contents
Installation
To use the beta of Zod 2 (recommended for new projects).
yarn add zod@beta
npm install zod@beta
To install the most recent v1 version:
yarn add zod
npm install zod
TypeScript requirements
- Zod 2.x requires TypeScript 3.7+
- Zod 1.x requires TypeScript 3.3+
Support for TS 3.2 was dropped with the release of zod@1.10 on 19 July 2020
You must enable strictNullChecks
or use strict
mode which includes strictNullChecks
. Otherwise Zod can't correctly infer the types of your schemas!
{
"compilerOptions": {
"strictNullChecks": true
}
}
Usage
Zod is a validation library designed for optimal developer experience. It's a TypeScript-first schema declaration library with rigorous inferred types, incredible developer experience, and a few killer features missing from the existing libraries.
- Zero dependencies (5kb compressed)
- Immutability; methods (i.e.
.optional()
return a new instance - Concise, chainable interface
- Functional approach ("Parse, don't validate!")
Primitives
You can create a Zod schema for any TypeScript primitive.
import * as z from 'zod';
z.string();
z.number();
z.bigint();
z.boolean();
z.date();
z.undefined();
z.null();
z.void();
z.any();
z.unknown();
Literals
const tuna = z.literal('tuna');
const twelve = z.literal(12);
const tru = z.literal(true);
Currently there is no support for Date or bigint literals in Zod. If you have a use case for this feature, please file an issue.
Validation
Parsing
.parse(data:unknown): T
Given any Zod schema, you can call its .parse
method to check data
is valid. If it is, a value is returned with full type information! Otherwise, an error is thrown.
IMPORTANT: In Zod 2 and Zod 1.11+, the value returned by .parse
is a deep clone of the variable you passed in. This was also the case in zod@1.4 and earlier.
const stringSchema = z.string();
stringSchema.parse('fish');
stringSchema.parse(12);
Safe parse
.safeParse(data:unknown): { success: true; data: T; } | { success: false; error: ZodError; }
If you don't want Zod to throw when validation errors occur, you can use .safeParse
. This method returns an object, even if validation errors occur:
stringSchema.safeParse(12);
stringSchema.safeParse('billie');
There is also an asynchronous version:
await stringSchema.safeParseAsync('billie');
You must use .parseAsync() or .safeParseAsync() if your schema contains asynchronous refinements for transformers.
The result is a discriminated union so you can handle errors very conveniently:
const result = stringSchema.safeParse('billie');
if (!result.success) {
return;
}
console.log(result.data);
Errors thrown from within refinement functions will not be caught.
Type guards
.check(data:unknown)
You can also use a Zod schema as a type guard using the schema's .check()
method, like so:
const stringSchema = z.string();
const blob: any = 'Albuquerque';
if (stringSchema.check(blob)) {
}
You can use the same method to check for invalid data:
const stringSchema = z.string();
const process = (blob: any) => {
if (!stringSchema.check(blob)) {
throw new Error('Not a string');
}
};
Refinements
.refine(validator: (data:T)=>any, params?: RefineParams)
Zod let you provide custom validation logic via refinements.
Zod was designed to mirror TypeScript as closely as possible. But there are many so-called "refinement types" you may wish to check for that can't be represented in TypeScript's type system. For instance: checking that a number is an Int or that a string is a valid email address.
For example, you can define a custom validation check on any Zod schema with .refine
:
const myString = z.string().refine(val => val.length <= 255, {
message: "String can't be more than 255 characters",
});
Refinements can also be async:
const userId = z.string().refine(async id => {
return true;
});
If you use async refinements, you must use the .parseAsync
method to parse data! Otherwise Zod will throw an error.
As you can see, .refine
takes two arguments.
-
The first is the validation function. This function takes one input (of type T
— the inferred type of the schema) and returns any
. Any truthy value will pass validation. (Prior to zod@1.6.2 the validation function had to return a boolean.)
-
The second argument accepts some options. You can use this to customize certain error-handling behavior:
type RefineParams = {
message?: string;
path?: (string | number)[];
params?: object;
};
These options let you define powerful custom behavior. Zod is commonly used for form validation. If you want to verify that "password" and "confirm" match, you can do so like this:
const passwordForm = z
.object({
password: z.string(),
confirm: z.string(),
})
.refine(data => data.password === data.confirm, {
message: "Passwords don't match",
path: ['confirm'],
})
.parse({ password: 'asdf', confirm: 'qwer' });
Because you provided a path
parameter, the resulting error will be:
ZodError {
issues: [{
"code": "custom",
"path": [ "confirm" ],
"message": "Passwords don't match"
}]
}
Note that the path
is set to ["confirm"]
, so you can easily display this error underneath the "Confirm password" textbox.
Important note, the value passed to the path
option is concatenated to the actual error path. So if you took passwordForm
from above and nested it inside another object, you would still get the error path you expect.
const allForms = z.object({ passwordForm }).parse({
passwordForm: {
password: 'asdf',
confirm: 'qwer',
},
});
would result in
ZodError {
issues: [{
"code": "custom",
"path": [ "passwordForm", "confirm" ],
"message": "Passwords don't match"
}]
}
Type inference
You can extract the TypeScript type of any schema with z.infer<typeof mySchema>
.
const A = z.string();
type A = z.infer<typeof A>;
const u: A = 12;
const u: A = 'asdf';
We'll include examples of inferred types throughout the rest of the documentation.
Strings
There are a handful of string-specific validations.
All of these validations allow you to optionally specify a custom error message.
z.string().min(5);
z.string().max(5);
z.string().length(5);
z.string().email();
z.string().url();
z.string().uuid();
z.string().regex(regex);
z.string().nonempty();
Use the .nonempty
method if you want the empty string (""
) to be considered invalid.
Check out validator.js for a bunch of other useful string validation functions.
Custom error messages
Like .refine
, The final (optional) argument is an object that lets you provide a custom error in the message
field.
z.string().min(5, { message: 'Must be 5 or more characters long' });
z.string().max(5, { message: 'Must be 5 or fewer characters long' });
z.string().length(5, { message: 'Must be exactly 5 characters long' });
z.string().email({ message: 'Invalid email address.' });
z.string().url({ message: 'Invalid url' });
z.string().uuid({ message: 'Invalid UUID' });
To see the email and url regexes, check out this file. To use a more advanced method, use a custom refinement.
Numbers
There are a handful of number-specific validations.
z.number().min(5);
z.number().max(5);
z.number().int();
z.number().positive();
z.number().nonnegative();
z.number().negative();
z.number().nonpositive();
You can optionally pass in a params object as the second argument to provide a custom error message.
z.number().max(5, { message: 'this👏is👏too👏big' });
Objects
const dogSchema = z.object({
name: z.string(),
age: z.number(),
});
type Dog = z.infer<typeof dogSchema>;
const cujo = dogSchema.parse({
name: 'Cujo',
age: 4,
});
const fido: Dog = {
name: 'Fido',
};
.shape
property
Use .shape
to access an object schema's property schemas.
const Location = z.object({
latitude: z.number(),
longitude: z.number(),
});
const Business = z.object({
location: Location,
});
Business.shape.location;
Merging
You can combine two object schemas with .merge
, like so:
const BaseTeacher = z.object({ subjects: z.array(z.string()) });
const HasID = z.object({ id: z.string() });
const Teacher = BaseTeacher.merge(HasID);
type Teacher = z.infer<typeof Teacher>;
You're able to fluently chain together many .merge
calls as well:
const Teacher = BaseTeacher.merge(HasId)
.merge(HasName)
.merge(HasAddress);
IMPORTANT: the schema returned by .merge
is the intersection of the two schemas. The schema passed into .merge
does not "overwrite" properties of the original schema. To demonstrate:
const Obj1 = z.object({ field: z.string() });
const Obj2 = z.object({ field: z.number() });
const Merged = Obj1.merge(Obj2);
type Merged = z.infer<typeof merged>;
To "overwrite" existing keys, use .extend
(documented below).
Extending objects
You can add additional fields an object schema with the .extend
method.
Before zod@1.8 this method was called .augment
. The augment
method is still available for backwards compatibility but it is deprecated and will be removed in a future release.
const Animal = z
.object({
species: z.string(),
})
.extend({
population: z.number(),
});
⚠️ You can use .extend
to overwrite fields! Be careful with this power!
const ModifiedAnimal = Animal.extend({
species: z.array(z.string()),
});
Pick and omit
Object masking is one of Zod's killer features. It lets you create slight variations of your object schemas easily and succinctly. Inspired by TypeScript's built-in Pick
and Omit
utility types, all Zod object schemas have .pick
and .omit
methods that return a "masked" version of the schema.
const Recipe = z.object({
id: z.string(),
name: z.string(),
ingredients: z.array(z.string()),
});
To only keep certain keys, use .pick
.
const JustTheName = Recipe.pick({ name: true });
type JustTheName = z.infer<typeof JustTheName>;
To remove certain keys, use .omit
.
const NoIDRecipe = Recipe.omit({ id: true });
type NoIDRecipe = z.infer<typeof NoIDRecipe>;
This is useful for database logic, where endpoints often accept as input slightly modified versions of your database schemas. For instance, the input to a hypothetical createRecipe
endpoint would accept the NoIDRecipe
type, since the ID will be generated by your database automatically.
This is a vital feature for implementing typesafe backend logic, yet as far as I know, no other validation library (yup, Joi, io-ts, runtypes, class-validator, ow...) offers similar functionality as of this writing (April 2020). This is one of the must-have features that inspired the creation of Zod.
Partials
Inspired by the built-in TypeScript utility type Partial, all Zod object schemas have a .partial
method that makes all properties optional.
Starting from this object:
const user = z.object({
username: z.string(),
location: z.object({
latitude: z.number(),
longitude: z.number(),
}),
});
We can create a partial version:
const partialUser = user.partial();
const partialUser = z.object({
username: user.shape.username.optional(),
location: user.shape.location.optional(),
});
Or you can use .deepPartial
:
const deepPartialUser = user.deepPartial();
Important limitation: deep partials only work as expected in hierarchies of object schemas. It also can't be used on recursive schemas currently, since creating a recursive schema requires casting to the generic ZodSchema
type (which doesn't include all the methods of the ZodObject
class). Currently an improved version of Zod is under development that will have better support for recursive schemas.
Unknown keys
By default Zod object schema strip unknown keys from the output.
⚠️ Before version 2, Zod did NOT allow unknown keys by default.
Zod will return
const person = z.object({
name: z.string(),
});
person.parse({
name: 'bob dylan',
extraKey: 61,
});
Pass through unknown keys
If you want to pass through unknown keys, use .passthrough()
.
For backwards compatibility, you can also use .nonstrict()
which behaves identically.
const person = z
.object({
name: z.string(),
})
.passthrough();
person.parse({
name: 'bob dylan',
extraKey: 61,
});
Disallow unknown keys
You can disallow unknown keys with .strict()
. If there are any unknown keys in the input, Zod will throw an error.
const person = z
.object({
name: z.string(),
})
.strict();
person.parse({
name: 'bob dylan',
extraKey: 61,
});
Primitives and nonprimitives
Zod provides a convenience method for automatically picking all primitive or non-primitive fields from an object schema.
const Post = z.object({
title: z.string()
});
const User = z.object({
id: z.number(),
name: z.string(),
posts: z.array(Post)
});
const UserFields = User.primitives();
typeof UserFields = z.infer<typeof UserFields>;
const UserRelations = User.nonprimitives();
typeof UserFields = z.infer<typeof UserFields>;
These schemas are considering "primitive":
- string
- number
- boolean
- bigint
- date
- null/undefined
- enums
- any array of the above types
- any union of the above types
Catchall
You can add a catchall
schema with .catchall()
. All unknown keys will be validated against the catchall schema.
const person = z
.object({
name: z.string(),
})
.catchall(z.number());
person.parse({
name: 'bob dylan',
validExtraKey: 61,
});
Using .catchall()
overrides .passsthrough()
, .strip()
, or .strict()
. All keys are now considered "known".
Records
Record schemas are used to validate types such as this:
type NumberCache = { [k: string]: number };
If you want to validate that all the values of an object match some schema, without caring about the keys, you should use a Record.
const User = z.object({
name: z.string(),
});
const UserStore = z.record(User);
type UserStore = z.infer<typeof UserStore>;
This is particularly useful for storing or caching items by ID.
const userStore: UserStore = {};
userStore['77d2586b-9e8e-4ecf-8b21-ea7e0530eadd'] = {
name: 'Carlotta',
};
userStore['77d2586b-9e8e-4ecf-8b21-ea7e0530eadd'] = {
whatever: 'Ice cream sundae',
};
And of course you can call .parse
just like any other Zod schema.
UserStore.parse({
user_1328741234: { name: 'James' },
});
A note on numerical keys
You may have expected z.record()
to accept two arguments, one for the keys and one for the values. After all, TypeScript's built-in Record type does: Record<KeyType, ValueType>
. Otherwise, how do you represent the TypeScript type Record<number, any>
in Zod?
As it turns out, TypeScript's behavior surrounding [k: number]
is a little unintuitive:
const testMap: { [k: number]: string } = {
1: 'one',
};
for (const key in testMap) {
console.log(`${key}: ${typeof key}`);
}
As you can see, JavaScript automatically casts all object keys to strings under the hood.
Since Zod is trying to bridge the gap between static and runtime types, it doesn't make sense to provide a way of creating a record schema with numerical keys, since there's no such thing as a numerical key in runtime JavaScript.
Arrays
There are two ways to define array schemas:
z.array(arg: ZodSchema)
First, you can create an array schema with the z.array()
function; it accepts another ZodSchema, which defines the type of each array element.
const stringArray = z.array(z.string());
the .array()
method
Second, you can call the .array()
method on any Zod schema:
const stringArray = z.string().array();
You have to be careful with the .array()
method. It returns a new ZodArray
instance. This means you need to be careful about the order in which you call methods. These two schemas are very different:
z.string()
.undefined()
.array();
z.string()
.array()
.undefined();
Non-empty lists
const nonEmptyStrings = z
.string()
.array()
.nonempty();
nonEmptyStrings.parse([]);
nonEmptyStrings.parse(['Ariana Grande']);
Length validations
z.array(z.string()).min(5);
z.array(z.string()).max(5);
z.array(z.string()).length(5);
Unions
Zod includes a built-in z.union
method for composing "OR" types.
const stringOrNumber = z.union([z.string(), z.number()]);
stringOrNumber.parse('foo');
stringOrNumber.parse(14);
Zod will test the input against each of the "options" in order and return the first value that validates successfully.
Optional types
You can make any schema optional with z.optional()
:
const A = z.optional(z.string());
A.parse(undefined);
type A = z.infer<typeof A>;
You can also call the .optional()
method on an existing schema:
const B = z.boolean().optional();
const C = z.object({
username: z.string().optional(),
});
type C = z.infer<typeof C>;
Nullable types
Similarly, you can create nullable types like so:
const D = z.nullable(z.string());
D.parse('asdf');
D.parse(null);
Or you can use the .optional()
method on any existing schema:
const E = z.string().nullable();
type E = z.infer<typeof D>;
You can create unions of any two or more schemas.
Enums
There are two ways to define enums in Zod.
Zod enums
An enum is just a union of string literals, so you could define an enum like this:
const FishEnum = z.union([
z.literal('Salmon'),
z.literal('Tuna'),
z.literal('Trout'),
]);
FishEnum.parse('Salmon');
FishEnum.parse('Flounder');
For convenience Zod provides a built-in z.enum()
function. Here's is the equivalent code:
const FishEnum = z.enum(['Salmon', 'Tuna', 'Trout']);
type FishEnum = z.infer<typeof FishEnum>;
Important! You need to pass the literal array directly into z.enum(). Do not define it separately, than pass it in as a variable! This is required for proper type inference.
Autocompletion
To get autocompletion with a Zod enum, use the .enum
property of your schema:
FishEnum.enum.Salmon;
FishEnum.enum;
You can also retrieve the list of options as a tuple with the .options
property:
FishEnum.options;
Native enums
⚠️ nativeEnum()
requires TypeScript 3.6 or higher!
Zod enums are the recommended approach to defining and validating enums. But there may be scenarios where you need to validate against an enum from a third-party library, or perhaps you don't want to rewrite your existing enums. For this you can use z.nativeEnum()
.
Numeric enums
enum Fruits {
Apple,
Banana,
}
const FruitEnum = z.nativeEnum(Fruits);
type FruitEnum = z.infer<typeof FruitEnum>;
FruitEnum.parse(Fruits.Apple);
FruitEnum.parse(Fruits.Banana);
FruitEnum.parse(0);
FruitEnum.parse(1);
FruitEnum.parse(3);
String enums
enum Fruits {
Apple = 'apple',
Banana = 'banana',
Cantaloupe,
}
const FruitEnum = z.nativeEnum(Fruits);
type FruitEnum = z.infer<typeof FruitEnum>;
FruitEnum.parse(Fruits.Apple);
FruitEnum.parse(Fruits.Cantaloupe);
FruitEnum.parse('apple');
FruitEnum.parse('banana');
FruitEnum.parse(0);
FruitEnum.parse('Cantaloupe');
Const enums
The .nativeEnum()
function works for as const
objects as well. ⚠️ as const
required TypeScript 3.4+!
const Fruits = {
Apple: 'apple',
Banana: 'banana',
Cantaloupe: 3,
} as const;
const FruitEnum = z.nativeEnum(Fruits);
type FruitEnum = z.infer<typeof FruitEnum>;
FruitEnum.parse('apple');
FruitEnum.parse('banana');
FruitEnum.parse(3);
FruitEnum.parse('Cantaloupe');
Intersections
Intersections are useful for creating "logical AND" types.
const a = z.union([z.number(), z.string()]);
const b = z.union([z.number(), z.boolean()]);
const c = z.intersection(a, b);
type c = z.infer<typeof c>;
const stringAndNumber = z.intersection(z.string(), z.number());
type Never = z.infer<typeof stringAndNumber>;
Tuples
These differ from arrays in that they have a fixed number of elements, and each element can have a different type.
const athleteSchema = z.tuple([
z.string(),
z.number(),
z.object({
pointsScored: z.number(),
}),
]);
type Athlete = z.infer<typeof athleteSchema>;
Recursive types
You can define a recursive schema in Zod, but because of a limitation of TypeScript, their type can't be statically inferred. If you need a recursive Zod schema you'll need to define the type definition manually, and provide it to Zod as a "type hint".
interface Category {
name: string;
subcategories: Category[];
}
const Category: z.ZodSchema<Category> = z.lazy(() =>
z.object({
name: z.string(),
subcategories: z.array(Category),
}),
);
Category.parse({
name: 'People',
subcategories: [
{
name: 'Politicians',
subcategories: [{ name: 'Presidents', subcategories: [] }],
},
],
});
Unfortunately this code is a bit duplicative, since you're declaring the types twice: once in the interface and again in the Zod definition.
If your schema has lots of primitive fields, there's a way of reducing the amount of duplication:
const BaseCategory = z.object({
name: z.string(),
tags: z.array(z.string()),
itemCount: z.number(),
});
interface Category extends z.infer<typeof BaseCategory> {
subcategories: Category[];
}
const Category: z.ZodSchema<Category> = BaseCategory.merge(
z.object({
subcategories: z.lazy(() => z.array(Category)),
}),
);
JSON type
If you want to validate any JSON value, you can use the snippet below. This requires TypeScript 3.7 or higher!
type Literal = boolean | null | number | string;
type Json = Literal | { [key: string]: Json } | Json[];
const literalSchema = z.union([z.string(), z.number(), z.boolean(), z.null()]);
const jsonSchema: z.ZodSchema<Json> = z.lazy(() =>
z.union([literalSchema, z.array(jsonSchema), z.record(jsonSchema)]),
);
jsonSchema.parse({
});
Thanks to ggoodman for suggesting this.
Cyclical objects
As of Zod 2, Zod no longer supports cyclical objects. If you absolutely need this feature you can still use Zod v1.
Promises
const numberPromise = z.promise(z.number());
"Parsing" works a little differently with promise schemas. Validation happens in two parts:
- Zod synchronously checks that the input is an instance of Promise (i.e. an object with
.then
and .catch
methods.). - Zod waits for the promise to resolve then validates the resolved value.
numberPromise.parse('tuna');
numberPromise.parse(Promise.resolve('tuna'));
const test = async () => {
await numberPromise.parse(Promise.resolve('tuna'));
await numberPromise.parse(Promise.resolve(3.14));
};
Non-native promise implementations
When "parsing" a promise, Zod checks that the passed value is an object with .then
and .catch
methods — that's it. So you should be able to pass non-native Promises (Bluebird, etc) into z.promise(...).parse
with no trouble. One gotcha: the return type of the parse function will be a native Promise
, so if you have downstream logic that uses non-standard Promise methods, this won't work.
Instanceof
You can use z.instanceof
to create a schema that checks if the input is an instance of a class.
class Test {
name: string;
}
const TestSchema = z.instanceof(Test);
const blob: any = 'whatever';
if (TestSchema.check(blob)) {
blob.name;
}
Function schemas
Zod also lets you define "function schemas". This makes it easy to validate the inputs and outputs of a function without intermixing your validation code and "business logic".
You can create a function schema with z.function(args, returnType)
.
const myFunction = z.function();
type myFunction = z.infer<typeof myFunction>;
You can use the .args
and .returns
methods to refine your function schema:
const myFunction = z
.function()
.args(z.string(), z.number())
.returns(z.boolean());
type myFunction = z.infer<typeof myFunction>;
You can use the special z.void()
option if your function doesn't return anything. This will let Zod properly infer the type of void-returning functions. (Void-returning function can actually return either undefined or null.)
Function schemas have an .implement()
method which accepts a function and returns a new function.
const trimmedLength = z
.function()
.args(z.string())
.returns(z.number())
.implement(x => {
return x.trim().length;
});
trimmedLength('sandwich');
trimmedLength(' asdf ');
myValidatedFunction
now automatically validates both its inputs and return value against the schemas provided to z.function
. If either is invalid, the function throws. This way you can confidently write application logic in a "validated function" without worrying about invalid inputs, scattering schema.validate()
calls in your endpoint definitions,or writing duplicative types for your functions.
Here's a more complex example showing how to write a typesafe API query endpoint:
const FetcherEndpoint = z
.function(args, returnType)
.args(z.object({ id: z.string() }))
.returns(
z.promise(
z.object({
id: string(),
name: string(),
}),
),
);
const getUserByID = FetcherEndpoint.validate(args => {
args;
const user = await User.findByID(args.id);
return 'salmon';
return user;
});
This is particularly useful for defining HTTP or RPC endpoints that accept complex payloads that require validation. Moreover, you can define your endpoints once with Zod and share the code with both your client and server code to achieve end-to-end type safety.
server.get(`/user/:id`, async (req, res) => {
const user = await getUserByID({ id: req.params.id }).catch(err => {
res.status(400).send(err.message);
});
res.status(200).send(user);
});
Transformers
You can integrate custom data transformations into your schemas with transformers. Transformers are just another type of Zod schema.
z.transformer()
const countLength = z.transformer(
z.string(),
z.number(),
myString => myString.length,
);
countLength.parse('string');
This lets you perform coercion, similar to Yup. You still need to provide the coercion logic yourself.
const coercedString = z.transformer(z.unknown(), z.string(), val => {
return `${val}`;
});
coercedString.parse(false);
coercedString.parse(12);
Transformations can also be async.
const IdToUser = z.transformer(
z.string().uuid(),
UserSchema,
userId => async id => {
return await getUserById(id);
},
);
⚠️ If your schema contains asynchronous transformers, you must use .parseAsync() or .safeParseAsync() to parse data. Otherwise Zod will throw an error.
.transform()
For convenience, ALL Zod schemas (not just transformers) has a .transform
method. The first argument lets you specify a "destination schema" which defines the type that the data should be transformed into.
const lengthChecker = z.string().transform(z.boolean(), val => {
return val.length > 5;
});
lengthChecker.parse('asdf');
lengthChecker.parse('qwerty');
You can omit the first argument, in which case Zod assumes you aren't transforming the data type:
z.string()
.transform(val => val.replace('pretty', 'extremely'))
.transform(val => val.toUpperCase())
.transform(val => val.split(' ').join('👏'))
.parse('zod 2 is pretty cool');
Default values
Using transformers, Zod lets you supply default values for your schemas.
const stringWithDefault = z.transformer(
z.string().optional(),
z.string(),
val => val || 'default value',
);
Equivalently you can express this using the built-in .default()
method, available on all Zod schemas. The default value will be used if and only if the schema is undefined
.
z.string().default('default value');
Type inference for transformers
There are special rules surrounding type inference for transformers.
const stringToNumber = z.transformer(
z.string(),
z.number(),
myString => myString.length,
);
type type = z.infer<stringToNumber>;
type out = z.output<stringToNumber>;
type in = z.input<stringToNumber>;
Errors
There is a dedicated guide on Zod's error handling system here: ERROR_HANDLING.md
Comparison
There are a handful of other widely-used validation libraries, but all of them have certain design limitations that make for a non-ideal developer experience.
Joi
https://github.com/hapijs/joi
Doesn't support static type inference 😕
Yup
https://github.com/jquense/yup
Yup is a full-featured library that was implemented first in vanilla JS, with TypeScript typings added later.
Differences
- Supports for casting and transformation
- All object fields are optional by default
- Non-standard
.required()
¹ - Missing object methods: (pick, omit, partial, deepPartial, merge, extend)
- Missing nonempty arrays with proper typing (
[T, ...T[]]
) - Missing promise schemas
- Missing function schemas
- Missing union & intersection schemas
¹ Yup has a strange interpretation of the word required
. Instead of meaning "not undefined", Yup uses it to mean "not empty". So yup.string().required()
will not accept an empty string, and yup.array(yup.string()).required()
will not accept an empty array. For Zod arrays there is a dedicated .nonempty()
method to indicate this, or you can implement it with a custom refinement.
io-ts
https://github.com/gcanti/io-ts
io-ts is an excellent library by gcanti. The API of io-ts heavily inspired the design of Zod.
In our experience, io-ts prioritizes functional programming purity over developer experience in many cases. This is a valid and admirable design goal, but it makes io-ts particularly hard to integrate into an existing codebase with a more procedural or object-oriented bias. For instance, consider how to define an object with optional properties in io-ts:
import * as t from 'io-ts';
const A = t.type({
foo: t.string,
});
const B = t.partial({
bar: t.number,
});
const C = t.intersection([A, B]);
type C = t.TypeOf<typeof C>;
You must define the required and optional props in separate object validators, pass the optionals through t.partial
(which marks all properties as optional), then combine them with t.intersection
.
Consider the equivalent in Zod:
const C = z.object({
foo: z.string(),
bar: z.string().optional(),
});
type C = z.infer<typeof C>;
This more declarative API makes schema definitions vastly more concise.
io-ts
also requires the use of gcanti's functional programming library fp-ts
to parse results and handle errors. This is another fantastic resource for developers looking to keep their codebase strictly functional. But depending on fp-ts
necessarily comes with a lot of intellectual overhead; a developer has to be familiar with functional programming concepts and the fp-ts
nomenclature to use the library.
- Supports codecs with serialization & deserialization transforms
- Supports branded types
- Supports advanced functional programming, higher-kinded types,
fp-ts
compatibility - Missing object methods: (pick, omit, partial, deepPartial, merge, extend)
- Missing nonempty arrays with proper typing (
[T, ...T[]]
) - Missing lazy/recursive types
- Missing promise schemas
- Missing function schemas
- Missing union & intersection schemas
- Missing support for parsing cyclical data (maybe)
- Missing error customization
Runtypes
https://github.com/pelotom/runtypes
Good type inference support, but limited options for object type masking (no .pick
, .omit
, .extend
, etc.). No support for Record
s (their Record
is equivalent to Zod's object
). They DO support branded and readonly types, which Zod does not.
- Supports "pattern matching": computed properties that distribute over unions
- Supports readonly types
- Missing object methods: (pick, omit, partial, deepPartial, merge, extend)
- Missing nonempty arrays with proper typing (
[T, ...T[]]
) - Missing lazy/recursive types
- Missing promise schemas
- Missing union & intersection schemas
- Missing error customization
- Missing record schemas (their "record" is equivalent to Zod "object")
Ow
https://github.com/sindresorhus/ow
Ow is focused on function input validation. It's a library that makes it easy to express complicated assert statements, but it doesn't let you parse untyped data. They support a much wider variety of types; Zod has a nearly one-to-one mapping with TypeScript's type system, whereas ow lets you validate several highly-specific types out of the box (e.g. int32Array
, see full list in their README).
If you want to validate function inputs, use function schemas in Zod! It's a much simpler approach that lets you reuse a function type declaration without repeating yourself (namely, copy-pasting a bunch of ow assertions at the beginning of every function). Also Zod lets you validate your return types as well, so you can be sure there won't be any unexpected data passed downstream.
Changelog
View the changelog at CHANGELOG.md