Research
Security News
Threat Actor Exposes Playbook for Exploiting npm to Build Blockchain-Powered Botnets
A threat actor's playbook for exploiting the npm ecosystem was exposed on the dark web, detailing how to build a blockchain-powered botnet.
TypeScript-first schema declaration and validation library with static type inference
Zod is a TypeScript-first schema declaration and validation library. It allows developers to create complex schemas for data validation with a simple and intuitive API. Zod schemas are composable and can be used to validate data at the edge of your application, ensuring that you're working with well-structured and type-safe data.
Basic Type Validation
Validates that the input is a string.
{"const schema = zod.string(); try { schema.parse('hello world'); } catch (e) { console.error(e); }"}
Object Schema Validation
Validates that the input is an object with specific properties of certain types.
{"const userSchema = zod.object({ name: zod.string(), age: zod.number(), email: zod.string().email() }); try { userSchema.parse({ name: 'John', age: 30, email: 'john@example.com' }); } catch (e) { console.error(e); }"}
Array Validation
Validates that the input is an array of strings.
{"const stringArraySchema = zod.array(zod.string()); try { stringArraySchema.parse(['apple', 'banana']); } catch (e) { console.error(e); }"}
Complex Nested Validation
Validates nested objects with various property types.
{"const nestedSchema = zod.object({ user: zod.object({ name: zod.string(), contact: zod.object({ email: zod.string().email(), phone: zod.string() }) }) }); try { nestedSchema.parse({ user: { name: 'Jane', contact: { email: 'jane@example.com', phone: '123-456-7890' } } }); } catch (e) { console.error(e); }"}
Custom Validation
Validates that a number is positive using custom validation logic.
{"const positiveNumber = zod.number().positive(); try { positiveNumber.parse(42); } catch (e) { console.error(e); }"}
Error Formatting
Formats validation errors for easier debugging and display.
{"const schema = zod.string(); try { schema.parse(42); } catch (e) { console.error(e.format()); }"}
Joi is a powerful schema description language and data validator for JavaScript. It offers a similar API to Zod but has been around longer and is often considered more mature. Joi provides a wide range of built-in validators and is highly extensible.
Yup is a JavaScript schema builder for value parsing and validation. It defines a schema with an expressive API and can be used with or without TypeScript. Yup is often used in the context of form validation, especially with libraries like Formik.
Ajv is a JSON Schema Validator. It validates data against JSON Schema (draft 06/07/2019) and is known for its performance. Unlike Zod, which is TypeScript-first, Ajv focuses on JSON Schema validation and is often used for validating data structures in RESTful APIs.
Class-validator allows for validation of class instances based on decorators. It is tightly coupled with TypeScript and uses decorators to define validation rules, which can be more familiar to developers used to working with TypeScript classes and decorators.
if you're happy and you know it, star this repo ⭐
You should be able to upgrade from v1 to v2 without any breaking changes to your code. Zod 2 is recommended for all new projects.
npm install zod@beta
yarn add zod@beta
Here are some of the new features.
.parseAsync
and .safeParseAsync
methods. Read more here: Refinements.passthrough()
, .strict()
, and .catchall()
. Read more here: ObjectsIn almost all cases, you'll be able to upgrade to Zod 2 without changing any code. Here are some of the (very minor) breaking changes:
Aug 30 — zod@1.11 was released with lots of cool features!
.safeParse
method. This lets you validate data in a more functional way, similar to io-ts
: https://github.com/vriad/zod#safe-parse.regex
refinement method: https://github.com/vriad/zod#strings.primitives()
and .nonprimitives()
. These methods let you quickly pick or omit primitive fields from objects, useful for validating API inputs: https://github.com/vriad/zod#primitives-and-nonprimitivesz.nativeEnum()
, which lets you create z Zod schema from an existing TypeScript enum
: https://github.com/vriad/zod#native-enumsZod is a TypeScript-first schema declaration and validation library. I'm using the term "schema" to broadly refer to any data type/structure, from a simple string
to a complex nested object.
Zod is designed to be as developer-friendly as possible. My goal is to eliminate duplicative type declarations wherever possible. With Zod, you declare a validator once and Zod will automatically infer the static TypeScript type. It's easy to compose simpler types into complex data structures.
Some other great aspects:
.optional()
return a new instanceI work on Zod in my free time, so if you're making money from a product that is built with Zod, I'd massively appreciate sponsorship at any level. For solo devs, I recommend the Chipotle Bowl tier or the Cup of Coffee tier. If you're making money from a product you built using Zod, consider the [Startup tier](Cup of Coffee tier). You can learn more about the tiers at github.com/sponsors/vriad.
Kevin Simper @kevinsimper |
Brandon Bayer @flybayer, creator of Blitz.js |
To get your name + Twitter + website here, sponsor Zod at the Freelancer or Consultancy tier.
To use the beta of Zod 2 (recommended for new projects).
yarn add zod@beta
npm install zod@beta
To install the most recent v1 version:
yarn add zod
npm install zod
Support for TS 3.2 was dropped with the release of zod@1.10 on 19 July 2020
You must enable strictNullChecks
or use strict
mode which includes strictNullChecks
. Otherwise Zod can't correctly infer the types of your schemas!
// tsconfig.json
{
// ...
"compilerOptions": {
// ...
"strictNullChecks": true
}
}
Zod is a validation library designed for optimal developer experience. It's a TypeScript-first schema declaration library with rigorous inferred types, incredible developer experience, and a few killer features missing from the existing libraries.
.optional()
return a new instanceYou can create a Zod schema for any TypeScript primitive.
import * as z from 'zod';
// primitive values
z.string();
z.number();
z.bigint();
z.boolean();
z.date();
// empty types
z.undefined();
z.null();
z.void();
// catch-all types
z.any();
z.unknown();
const tuna = z.literal('tuna');
const twelve = z.literal(12);
const tru = z.literal(true);
Currently there is no support for Date or bigint literals in Zod. If you have a use case for this feature, please file an issue.
.parse(data:unknown): T
Given any Zod schema, you can call its .parse
method to check data
is valid. If it is, a value is returned with full type information! Otherwise, an error is thrown.
IMPORTANT: In Zod 2 and Zod 1.11+, the value returned by
.parse
is a deep clone of the variable you passed in. This was also the case in zod@1.4 and earlier.
const stringSchema = z.string();
stringSchema.parse('fish'); // => returns "fish"
stringSchema.parse(12); // throws Error('Non-string type: number');
.safeParse(data:unknown): { success: true; data: T; } | { success: false; error: ZodError; }
If you don't want Zod to throw when validation errors occur, you can use .safeParse
. This method returns an object, even if validation errors occur:
stringSchema.safeParse(12);
// => { success: false; error: ZodError }
stringSchema.safeParse('billie');
// => { success: true; data: 'billie' }
There is also an asynchronous version:
await stringSchema.safeParseAsync('billie');
You must use .parseAsync() or .safeParseAsync() if your schema contains asynchronous refinements for transformers.
The result is a discriminated union so you can handle errors very conveniently:
const result = stringSchema.safeParse('billie');
if (!result.success) {
// handle error then return
return;
}
// underneath the if statement, TypeScript knows
// that validation passed
console.log(result.data);
Errors thrown from within refinement functions will not be caught.
.check(data:unknown)
You can also use a Zod schema as a type guard using the schema's .check()
method, like so:
const stringSchema = z.string();
const blob: any = 'Albuquerque';
if (stringSchema.check(blob)) {
// blob is now of type `string`
// within this if statement
}
You can use the same method to check for invalid data:
const stringSchema = z.string();
const process = (blob: any) => {
if (!stringSchema.check(blob)) {
throw new Error('Not a string');
}
// blob is now of type `string`
// underneath the if statement
};
.refine(validator: (data:T)=>any, params?: RefineParams)
Zod let you provide custom validation logic via refinements.
Zod was designed to mirror TypeScript as closely as possible. But there are many so-called "refinement types" you may wish to check for that can't be represented in TypeScript's type system. For instance: checking that a number is an Int or that a string is a valid email address.
For example, you can define a custom validation check on any Zod schema with .refine
:
const myString = z.string().refine(val => val.length <= 255, {
message: "String can't be more than 255 characters",
});
Refinements can also be async:
const userId = z.string().refine(async id => {
// verify that ID exists in database
return true;
});
If you use async refinements, you must use the
.parseAsync
method to parse data! Otherwise Zod will throw an error.
As you can see, .refine
takes two arguments.
The first is the validation function. This function takes one input (of type T
— the inferred type of the schema) and returns any
. Any truthy value will pass validation. (Prior to zod@1.6.2 the validation function had to return a boolean.)
The second argument accepts some options. You can use this to customize certain error-handling behavior:
type RefineParams = {
// override error message
message?: string;
// appended to error path
path?: (string | number)[];
// params object you can use to customize message
// in error map
params?: object;
};
These options let you define powerful custom behavior. Zod is commonly used for form validation. If you want to verify that "password" and "confirm" match, you can do so like this:
const passwordForm = z
.object({
password: z.string(),
confirm: z.string(),
})
.refine(data => data.password === data.confirm, {
message: "Passwords don't match",
path: ['confirm'], // path of error
})
.parse({ password: 'asdf', confirm: 'qwer' });
Because you provided a path
parameter, the resulting error will be:
ZodError {
issues: [{
"code": "custom",
"path": [ "confirm" ],
"message": "Passwords don't match"
}]
}
Note that the path
is set to ["confirm"]
, so you can easily display this error underneath the "Confirm password" textbox.
Important note, the value passed to the path
option is concatenated to the actual error path. So if you took passwordForm
from above and nested it inside another object, you would still get the error path you expect.
const allForms = z.object({ passwordForm }).parse({
passwordForm: {
password: 'asdf',
confirm: 'qwer',
},
});
would result in
ZodError {
issues: [{
"code": "custom",
"path": [ "passwordForm", "confirm" ],
"message": "Passwords don't match"
}]
}
You can extract the TypeScript type of any schema with z.infer<typeof mySchema>
.
const A = z.string();
type A = z.infer<typeof A>; // string
const u: A = 12; // TypeError
const u: A = 'asdf'; // compiles
We'll include examples of inferred types throughout the rest of the documentation.
There are a handful of string-specific validations.
All of these validations allow you to optionally specify a custom error message.
z.string().min(5);
z.string().max(5);
z.string().length(5);
z.string().email();
z.string().url();
z.string().uuid();
z.string().regex(regex);
Check out validator.js for a bunch of other useful string validation functions.
Like .refine
, The final (optional) argument is an object that lets you provide a custom error in the message
field.
z.string().min(5, { message: 'Must be 5 or more characters long' });
z.string().max(5, { message: 'Must be 5 or fewer characters long' });
z.string().length(5, { message: 'Must be exactly 5 characters long' });
z.string().email({ message: 'Invalid email address.' });
z.string().url({ message: 'Invalid url' });
z.string().uuid({ message: 'Invalid UUID' });
To see the email and url regexes, check out this file. To use a more advanced method, use a custom refinement.
There are a handful of number-specific validations.
z.number().min(5);
z.number().max(5);
z.number().int(); // value must be an integer
z.number().positive(); // > 0
z.number().nonnegative(); // >= 0
z.number().negative(); // < 0
z.number().nonpositive(); // <= 0
You can optionally pass in a params object as the second argument to provide a custom error message.
z.number().max(5, { message: 'this👏is👏too👏big' });
// all properties are required by default
const dogSchema = z.object({
name: z.string(),
age: z.number(),
});
type Dog = z.infer<typeof dogSchema>;
/*
equivalent to:
type Dog = {
name: string;
age: number;
}
*/
const cujo = dogSchema.parse({
name: 'Cujo',
age: 4,
}); // passes, returns Dog
const fido: Dog = {
name: 'Fido',
}; // TypeError: missing required property `age`
.shape
propertyUse .shape
to access an object schema's property schemas.
const Location = z.object({
latitude: z.number(),
longitude: z.number(),
});
const Business = z.object({
location: Location,
});
Business.shape.location; // => Location schema
You can combine two object schemas with .merge
, like so:
const BaseTeacher = z.object({ subjects: z.array(z.string()) });
const HasID = z.object({ id: z.string() });
const Teacher = BaseTeacher.merge(HasID);
type Teacher = z.infer<typeof Teacher>; // => { subjects: string[], id: string }
You're able to fluently chain together many .merge
calls as well:
// chaining mixins
const Teacher = BaseTeacher.merge(HasId)
.merge(HasName)
.merge(HasAddress);
IMPORTANT: the schema returned by
.merge
is the intersection of the two schemas. The schema passed into.merge
does not "overwrite" properties of the original schema. To demonstrate:
const Obj1 = z.object({ field: z.string() });
const Obj2 = z.object({ field: z.number() });
const Merged = Obj1.merge(Obj2);
type Merged = z.infer<typeof merged>;
// => { field: never }
// because no type can simultaneously be both a string and a number
To "overwrite" existing keys, use .extend
(documented below).
You can add additional fields an object schema with the .extend
method.
Before zod@1.8 this method was called
.augment
. Theaugment
method is still available for backwards compatibility but it is deprecated and will be removed in a future release.
const Animal = z
.object({
species: z.string(),
})
.extend({
population: z.number(),
});
⚠️ You can use
.extend
to overwrite fields! Be careful with this power!
// overwrites `species`
const ModifiedAnimal = Animal.extend({
species: z.array(z.string()),
});
// => { population: number, species: string[] }
Object masking is one of Zod's killer features. It lets you create slight variations of your object schemas easily and succinctly. Inspired by TypeScript's built-in Pick
and Omit
utility types, all Zod object schemas have .pick
and .omit
methods that return a "masked" version of the schema.
const Recipe = z.object({
id: z.string(),
name: z.string(),
ingredients: z.array(z.string()),
});
To only keep certain keys, use .pick
.
const JustTheName = Recipe.pick({ name: true });
type JustTheName = z.infer<typeof JustTheName>;
// => { name: string }
To remove certain keys, use .omit
.
const NoIDRecipe = Recipe.omit({ id: true });
type NoIDRecipe = z.infer<typeof NoIDRecipe>;
// => { name: string, ingredients: string[] }
This is useful for database logic, where endpoints often accept as input slightly modified versions of your database schemas. For instance, the input to a hypothetical createRecipe
endpoint would accept the NoIDRecipe
type, since the ID will be generated by your database automatically.
This is a vital feature for implementing typesafe backend logic, yet as far as I know, no other validation library (yup, Joi, io-ts, runtypes, class-validator, ow...) offers similar functionality as of this writing (April 2020). This is one of the must-have features that inspired the creation of Zod.
Inspired by the built-in TypeScript utility type Partial, all Zod object schemas have a .partial
method that makes all properties optional.
Starting from this object:
const user = z.object({
username: z.string(),
location: z.object({
latitude: z.number(),
longitude: z.number(),
}),
});
/*
{ username: string, location: { city: number, state: number } }
*/
We can create a partial version:
const partialUser = user.partial();
/*
{
username?: string | undefined,
location?: {
city: number;
state: number;
} | undefined
}
*/
// equivalent to:
const partialUser = z.object({
username: user.shape.username.optional(),
location: user.shape.location.optional(),
});
Or you can use .deepPartial
:
const deepPartialUser = user.deepPartial();
/*
{
username?: string | undefined,
location?: {
latitude?: number | undefined;
longitude?: number | undefined;
} | undefined
}
*/
Important limitation: deep partials only work as expected in hierarchies of object schemas. It also can't be used on recursive schemas currently, since creating a recursive schema requires casting to the generic
ZodSchema
type (which doesn't include all the methods of theZodObject
class). Currently an improved version of Zod is under development that will have better support for recursive schemas.
By default Zod object schema strip unknown keys from the output.
⚠️ Before version 2, Zod did NOT allow unknown keys by default.
Zod will return
const person = z.object({
name: z.string(),
});
person.parse({
name: 'bob dylan',
extraKey: 61,
});
// => { name: "bob dylan" }
If you want to pass through unknown keys, use .passthrough()
.
For backwards compatibility, you can also use
.nonstrict()
which behaves identically.
const person = z
.object({
name: z.string(),
})
.passthrough();
person.parse({
name: 'bob dylan',
extraKey: 61,
});
// => { name: "bob dylan", extraKey: 61 }
You can disallow unknown keys with .strict()
. If there are any unknown keys in the input, Zod will throw an error.
const person = z
.object({
name: z.string(),
})
.strict();
person.parse({
name: 'bob dylan',
extraKey: 61,
});
// => throws ZodError
Zod provides a convenience method for automatically picking all primitive or non-primitive fields from an object schema.
const Post = z.object({
title: z.string()
});
const User = z.object({
id: z.number(),
name: z.string(),
posts: z.array(Post)
});
const UserFields = User.primitives();
typeof UserFields = z.infer<typeof UserFields>;
// => { id: number; name; string; }
const UserRelations = User.nonprimitives();
typeof UserFields = z.infer<typeof UserFields>;
// => { posts: Post[] }
These schemas are considering "primitive":
You can add a catchall
schema with .catchall()
. All unknown keys will be validated against the catchall schema.
const person = z
.object({
name: z.string(),
})
.catchall(z.number());
person.parse({
name: 'bob dylan',
validExtraKey: 61, // works fine
});
// => { name: "bob dylan" }
Using
.catchall()
overrides.passsthrough()
,.strip()
, or.strict()
. All keys are now considered "known".
Record schemas are used to validate types such as this:
type NumberCache = { [k: string]: number };
If you want to validate that all the values of an object match some schema, without caring about the keys, you should use a Record.
const User = z.object({
name: z.string(),
});
const UserStore = z.record(User);
type UserStore = z.infer<typeof UserStore>;
// => { [k: string]: User }
This is particularly useful for storing or caching items by ID.
const userStore: UserStore = {};
userStore['77d2586b-9e8e-4ecf-8b21-ea7e0530eadd'] = {
name: 'Carlotta',
}; // passes
userStore['77d2586b-9e8e-4ecf-8b21-ea7e0530eadd'] = {
whatever: 'Ice cream sundae',
}; // TypeError
And of course you can call .parse
just like any other Zod schema.
UserStore.parse({
user_1328741234: { name: 'James' },
}); // => passes
You may have expected z.record()
to accept two arguments, one for the keys and one for the values. After all, TypeScript's built-in Record type does: Record<KeyType, ValueType>
. Otherwise, how do you represent the TypeScript type Record<number, any>
in Zod?
As it turns out, TypeScript's behavior surrounding [k: number]
is a little unintuitive:
const testMap: { [k: number]: string } = {
1: 'one',
};
for (const key in testMap) {
console.log(`${key}: ${typeof key}`);
}
// prints: `1: string`
As you can see, JavaScript automatically casts all object keys to strings under the hood.
Since Zod is trying to bridge the gap between static and runtime types, it doesn't make sense to provide a way of creating a record schema with numerical keys, since there's no such thing as a numerical key in runtime JavaScript.
There are two ways to define array schemas:
z.array(arg: ZodSchema)
First, you can create an array schema with the z.array()
function; it accepts another ZodSchema, which defines the type of each array element.
const stringArray = z.array(z.string());
// inferred type: string[]
.array()
methodSecond, you can call the .array()
method on any Zod schema:
const stringArray = z.string().array();
// inferred type: string[]
You have to be careful with the .array()
method. It returns a new ZodArray
instance. This means you need to be careful about the order in which you call methods. These two schemas are very different:
z.string()
.undefined()
.array(); // (string | undefined)[]
z.string()
.array()
.undefined(); // string[] | undefined
const nonEmptyStrings = z
.string()
.array()
.nonempty();
// [string, ...string[]]
nonEmptyStrings.parse([]); // throws: "Array cannot be empty"
nonEmptyStrings.parse(['Ariana Grande']); // passes
// must contain 5 or more items
z.array(z.string()).min(5);
// must contain 5 or fewer items
z.array(z.string()).max(5);
// must contain exactly 5 items
z.array(z.string()).length(5);
Zod includes a built-in z.union
method for composing "OR" types.
const stringOrNumber = z.union([z.string(), z.number()]);
stringOrNumber.parse('foo'); // passes
stringOrNumber.parse(14); // passes
Zod will test the input against each of the "options" in order and return the first value that validates successfully.
You can make any schema optional with z.optional()
:
const A = z.optional(z.string());
A.parse(undefined); // => passes, returns undefined
type A = z.infer<typeof A>; // string | undefined
You can also call the .optional()
method on an existing schema:
const B = z.boolean().optional();
const C = z.object({
username: z.string().optional(),
});
type C = z.infer<typeof C>; // { username?: string | undefined };
Similarly, you can create nullable types like so:
const D = z.nullable(z.string());
D.parse('asdf'); // => "asdf"
D.parse(null); // => null
Or you can use the .optional()
method on any existing schema:
const E = z.string().nullable(); // equivalent to D
type E = z.infer<typeof D>; // string | null
You can create unions of any two or more schemas.
There are two ways to define enums in Zod.
An enum is just a union of string literals, so you could define an enum like this:
const FishEnum = z.union([
z.literal('Salmon'),
z.literal('Tuna'),
z.literal('Trout'),
]);
FishEnum.parse('Salmon'); // => "Salmon"
FishEnum.parse('Flounder'); // => throws
For convenience Zod provides a built-in z.enum()
function. Here's is the equivalent code:
const FishEnum = z.enum(['Salmon', 'Tuna', 'Trout']);
type FishEnum = z.infer<typeof FishEnum>;
// 'Salmon' | 'Tuna' | 'Trout'
Important! You need to pass the literal array directly into z.enum(). Do not define it separately, than pass it in as a variable! This is required for proper type inference.
Autocompletion
To get autocompletion with a Zod enum, use the .enum
property of your schema:
FishEnum.enum.Salmon; // => autocompletes
FishEnum.enum;
/*
=> {
Salmon: "Salmon",
Tuna: "Tuna",
Trout: "Trout",
}
*/
You can also retrieve the list of options as a tuple with the .options
property:
FishEnum.options; // ["Salmon", "Tuna", "Trout"]);
⚠️
nativeEnum()
requires TypeScript 3.6 or higher!
Zod enums are the recommended approach to defining and validating enums. But there may be scenarios where you need to validate against an enum from a third-party library, or perhaps you don't want to rewrite your existing enums. For this you can use z.nativeEnum()
.
Numeric enums
enum Fruits {
Apple,
Banana,
}
const FruitEnum = z.nativeEnum(Fruits);
type FruitEnum = z.infer<typeof FruitEnum>; // Fruits
FruitEnum.parse(Fruits.Apple); // passes
FruitEnum.parse(Fruits.Banana); // passes
FruitEnum.parse(0); // passes
FruitEnum.parse(1); // passes
FruitEnum.parse(3); // fails
String enums
enum Fruits {
Apple = 'apple',
Banana = 'banana',
Cantaloupe, // you can mix numerical and string enums
}
const FruitEnum = z.nativeEnum(Fruits);
type FruitEnum = z.infer<typeof FruitEnum>; // Fruits
FruitEnum.parse(Fruits.Apple); // passes
FruitEnum.parse(Fruits.Cantaloupe); // passes
FruitEnum.parse('apple'); // passes
FruitEnum.parse('banana'); // passes
FruitEnum.parse(0); // passes
FruitEnum.parse('Cantaloupe'); // fails
Const enums
The .nativeEnum()
function works for as const
objects as well. ⚠️ as const
required TypeScript 3.4+!
const Fruits = {
Apple: 'apple',
Banana: 'banana',
Cantaloupe: 3,
} as const;
const FruitEnum = z.nativeEnum(Fruits);
type FruitEnum = z.infer<typeof FruitEnum>; // "apple" | "banana" | 3
FruitEnum.parse('apple'); // passes
FruitEnum.parse('banana'); // passes
FruitEnum.parse(3); // passes
FruitEnum.parse('Cantaloupe'); // fails
Intersections are useful for creating "logical AND" types.
const a = z.union([z.number(), z.string()]);
const b = z.union([z.number(), z.boolean()]);
const c = z.intersection(a, b);
type c = z.infer<typeof c>; // => number
const stringAndNumber = z.intersection(z.string(), z.number());
type Never = z.infer<typeof stringAndNumber>; // => never
These differ from arrays in that they have a fixed number of elements, and each element can have a different type.
const athleteSchema = z.tuple([
// takes an array of schemas
z.string(), // name
z.number(), // jersey number
z.object({
pointsScored: z.number(),
}), // statistics
]);
type Athlete = z.infer<typeof athleteSchema>;
// type Athlete = [string, number, { pointsScored: number }]
You can define a recursive schema in Zod, but because of a limitation of TypeScript, their type can't be statically inferred. If you need a recursive Zod schema you'll need to define the type definition manually, and provide it to Zod as a "type hint".
interface Category {
name: string;
subcategories: Category[];
}
const Category: z.ZodSchema<Category> = z.lazy(() =>
z.object({
name: z.string(),
subcategories: z.array(Category),
}),
);
Category.parse({
name: 'People',
subcategories: [
{
name: 'Politicians',
subcategories: [{ name: 'Presidents', subcategories: [] }],
},
],
}); // passes
Unfortunately this code is a bit duplicative, since you're declaring the types twice: once in the interface and again in the Zod definition.
If your schema has lots of primitive fields, there's a way of reducing the amount of duplication:
// define all the non-recursive stuff here
const BaseCategory = z.object({
name: z.string(),
tags: z.array(z.string()),
itemCount: z.number(),
});
// create an interface that extends the base schema
interface Category extends z.infer<typeof BaseCategory> {
subcategories: Category[];
}
// merge the base schema with
// a new Zod schema containing relations
const Category: z.ZodSchema<Category> = BaseCategory.merge(
z.object({
subcategories: z.lazy(() => z.array(Category)),
}),
);
If you want to validate any JSON value, you can use the snippet below. This requires TypeScript 3.7 or higher!
type Literal = boolean | null | number | string;
type Json = Literal | { [key: string]: Json } | Json[];
const literalSchema = z.union([z.string(), z.number(), z.boolean(), z.null()]);
const jsonSchema: z.ZodSchema<Json> = z.lazy(() =>
z.union([literalSchema, z.array(jsonSchema), z.record(jsonSchema)]),
);
jsonSchema.parse({
// data
});
Thanks to ggoodman for suggesting this.
As of Zod 2, Zod no longer supports cyclical objects. If you absolutely need this feature you can still use Zod v1.
const numberPromise = z.promise(z.number());
"Parsing" works a little differently with promise schemas. Validation happens in two parts:
.then
and .catch
methods.).numberPromise.parse('tuna');
// ZodError: Non-Promise type: string
numberPromise.parse(Promise.resolve('tuna'));
// => Promise<number>
const test = async () => {
await numberPromise.parse(Promise.resolve('tuna'));
// ZodError: Non-number type: string
await numberPromise.parse(Promise.resolve(3.14));
// => 3.14
};
When "parsing" a promise, Zod checks that the passed value is an object with .then
and .catch
methods — that's it. So you should be able to pass non-native Promises (Bluebird, etc) into z.promise(...).parse
with no trouble. One gotcha: the return type of the parse function will be a native Promise
, so if you have downstream logic that uses non-standard Promise methods, this won't work.
You can use z.instanceof
to create a schema that checks if the input is an instance of a class.
class Test {
name: string;
}
const TestSchema = z.instanceof(Test);
const blob: any = 'whatever';
if (TestSchema.check(blob)) {
blob.name; // Test instance
}
Zod also lets you define "function schemas". This makes it easy to validate the inputs and outputs of a function without intermixing your validation code and "business logic".
You can create a function schema with z.function(args, returnType)
.
const myFunction = z.function();
type myFunction = z.infer<typeof myFunction>;
// => ()=>unknown
You can use the .args
and .returns
methods to refine your function schema:
const myFunction = z
.function()
.args(z.string(), z.number()) // accepts an arbitrary number of arguments
.returns(z.boolean());
type myFunction = z.infer<typeof myFunction>;
// => (arg0: string, arg1: number)=>boolean
You can use the special
z.void()
option if your function doesn't return anything. This will let Zod properly infer the type of void-returning functions. (Void-returning function can actually return either undefined or null.)
Function schemas have an .implement()
method which accepts a function and returns a new function.
const trimmedLength = z
.function()
.args(z.string()) // accepts an arbitrary number of arguments
.returns(z.number())
.implement(x => {
// TypeScript knows x is a string!
return x.trim().length;
});
trimmedLength('sandwich'); // => 8
trimmedLength(' asdf '); // => 4
myValidatedFunction
now automatically validates both its inputs and return value against the schemas provided to z.function
. If either is invalid, the function throws. This way you can confidently write application logic in a "validated function" without worrying about invalid inputs, scattering schema.validate()
calls in your endpoint definitions,or writing duplicative types for your functions.
Here's a more complex example showing how to write a typesafe API query endpoint:
const FetcherEndpoint = z
.function(args, returnType)
.args(z.object({ id: z.string() }))
.returns(
z.promise(
z.object({
id: string(),
name: string(),
}),
),
);
const getUserByID = FetcherEndpoint.validate(args => {
args; // => { id: string }
const user = await User.findByID(args.id);
// TypeScript statically verifies that value returned by
// this function is of type Promise<{ id: string; name: string; }>
return 'salmon'; // TypeError
return user; // compiles successfully
});
This is particularly useful for defining HTTP or RPC endpoints that accept complex payloads that require validation. Moreover, you can define your endpoints once with Zod and share the code with both your client and server code to achieve end-to-end type safety.
// Express example
server.get(`/user/:id`, async (req, res) => {
const user = await getUserByID({ id: req.params.id }).catch(err => {
res.status(400).send(err.message);
});
res.status(200).send(user);
});
You can integrate custom data transformations into your schemas with transformers. Transformers are just another type of Zod schema.
const countLength = z.transformer(
z.string(),
z.number(),
myString => myString.length,
);
countLength.parse('string'); // => 6
This lets you perform coercion, similar to Yup. You still need to provide the coercion logic yourself.
const coercedString = z.transformer(z.unknown(), z.string(), val => {
return `${val}`;
});
coercedString.parse(false); // => "false"
coercedString.parse(12); // => "12"
Transformations can also be async.
const IdToUser = z.transformer(
z.string().uuid(),
UserSchema,
userId => async id => {
return await getUserById(id);
},
);
⚠️ If your schema contains asynchronous transformers, you must use .parseAsync() or .safeParseAsync() to parse data. Otherwise Zod will throw an error.
For convenience, ALL Zod schemas (not just transformers) has a .transform
method. The first argument lets you specify a "destination schema" which defines the type that the data should be transformed into.
const lengthChecker = z.string().transform(z.boolean(), val => {
return val.length > 5;
});
lengthChecker.parse('asdf'); // => false;
lengthChecker.parse('qwerty'); // => true;
You can omit the first argument, in which case Zod assumes you aren't transforming the data type:
z.string()
.transform(val => val.replace('pretty', 'extremely'))
.transform(val => val.toUpperCase())
.transform(val => val.split(' ').join('👏'))
.parse('zod 2 is pretty cool');
// => "ZOD👏2👏IS👏EXTREMELY👏COOL"
Using transformers, Zod lets you supply default values for your schemas.
const stringWithDefault = z.transformer(
z.string().optional(),
z.string(),
val => val || 'default value',
);
Equivalently you can express this using the built-in .default()
method, available on all Zod schemas. The default value will be used if and only if the schema is undefined
.
z.string().default('default value');
There are special rules surrounding type inference for transformers.
const stringToNumber = z.transformer(
z.string(),
z.number(),
myString => myString.length,
);
// z.infer<> gives the return type
type type = z.infer<stringToNumber>; // number
// it is equivalent to z.output<>
type out = z.output<stringToNumber>; // number
// you can use z.input<> to get the input type
type in = z.input<stringToNumber>; // string
There is a dedicated guide on Zod's error handling system here: ERROR_HANDLING.md
There are a handful of other widely-used validation libraries, but all of them have certain design limitations that make for a non-ideal developer experience.
Doesn't support static type inference 😕
https://github.com/jquense/yup
Yup is a full-featured library that was implemented first in vanilla JS, with TypeScript typings added later.
Differences
.required()
¹[T, ...T[]]
)¹ Yup has a strange interpretation of the word required
. Instead of meaning "not undefined", Yup uses it to mean "not empty". So yup.string().required()
will not accept an empty string, and yup.array(yup.string()).required()
will not accept an empty array. For Zod arrays there is a dedicated .nonempty()
method to indicate this, or you can implement it with a custom refinement.
https://github.com/gcanti/io-ts
io-ts is an excellent library by gcanti. The API of io-ts heavily inspired the design of Zod.
In our experience, io-ts prioritizes functional programming purity over developer experience in many cases. This is a valid and admirable design goal, but it makes io-ts particularly hard to integrate into an existing codebase with a more procedural or object-oriented bias. For instance, consider how to define an object with optional properties in io-ts:
import * as t from 'io-ts';
const A = t.type({
foo: t.string,
});
const B = t.partial({
bar: t.number,
});
const C = t.intersection([A, B]);
type C = t.TypeOf<typeof C>;
// returns { foo: string; bar?: number | undefined }
You must define the required and optional props in separate object validators, pass the optionals through t.partial
(which marks all properties as optional), then combine them with t.intersection
.
Consider the equivalent in Zod:
const C = z.object({
foo: z.string(),
bar: z.string().optional(),
});
type C = z.infer<typeof C>;
// returns { foo: string; bar?: number | undefined }
This more declarative API makes schema definitions vastly more concise.
io-ts
also requires the use of gcanti's functional programming library fp-ts
to parse results and handle errors. This is another fantastic resource for developers looking to keep their codebase strictly functional. But depending on fp-ts
necessarily comes with a lot of intellectual overhead; a developer has to be familiar with functional programming concepts and the fp-ts
nomenclature to use the library.
fp-ts
compatibility[T, ...T[]]
)https://github.com/pelotom/runtypes
Good type inference support, but limited options for object type masking (no .pick
, .omit
, .extend
, etc.). No support for Record
s (their Record
is equivalent to Zod's object
). They DO support branded and readonly types, which Zod does not.
[T, ...T[]]
)https://github.com/sindresorhus/ow
Ow is focused on function input validation. It's a library that makes it easy to express complicated assert statements, but it doesn't let you parse untyped data. They support a much wider variety of types; Zod has a nearly one-to-one mapping with TypeScript's type system, whereas ow lets you validate several highly-specific types out of the box (e.g. int32Array
, see full list in their README).
If you want to validate function inputs, use function schemas in Zod! It's a much simpler approach that lets you reuse a function type declaration without repeating yourself (namely, copy-pasting a bunch of ow assertions at the beginning of every function). Also Zod lets you validate your return types as well, so you can be sure there won't be any unexpected data passed downstream.
View the changelog at CHANGELOG.md
FAQs
TypeScript-first schema declaration and validation library with static type inference
The npm package zod receives a total of 8,214,627 weekly downloads. As such, zod popularity was classified as popular.
We found that zod demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
A threat actor's playbook for exploiting the npm ecosystem was exposed on the dark web, detailing how to build a blockchain-powered botnet.
Security News
NVD’s backlog surpasses 20,000 CVEs as analysis slows and NIST announces new system updates to address ongoing delays.
Security News
Research
A malicious npm package disguised as a WhatsApp client is exploiting authentication flows with a remote kill switch to exfiltrate data and destroy files.