Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

aafitrans

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

aafitrans

match coordinate lists

  • 0.2.1
  • PyPI
  • Socket score

Maintainers
1

Aafitrans (AstroAlign FInd TRANSform)

Aafitrans is a Python package that builds upon the capabilities of the Astroalign package's find_transform function. It incorporates several modifications to improve its functionality and performance:

  1. Enhanced RANSAC Algorithm: The RANSAC algorithm used in Aafitrans has been optimized to provide a solution that minimizes the sum of squared residuals. This improvement ensures a more accurate transformation estimation.

  2. Arun and Horn's Method: Aafitrans replaces Umeyama's method from scikit-image with Arun and Horn's method for estimating 'euclidean' or 'similarity' transformations.

  3. Reflection Support: Unlike Astroalign, Aafitrans enables the matching of coordinate lists that include reflection along one axis. This enhancement expands the range of transformations that can be accurately estimated.

  4. Extended Transformation Options: Aafitrans supports all transformations available in the scikit-image library, providing a comprehensive set of options for aligning and transforming images.

Note: only 'euclidean', 'similarity', and 'affine' transformations have been tested.

  1. Improved Matching Efficiency: The kdtree_search_radius parameter in Aafitrans allows users to set the search radius for matches, enabling faster and more efficient matching of corresponding points between images.

  2. Reproducible Results: Aafitrans introduces the seed parameter, which can be set during each run to ensure the reproducibility of results. This feature is particularly useful for research and debugging purposes.

  3. Dependency Optimization: Aafitrans eliminates the need for the sep and bottleneck packages as dependencies, streamlining the installation process and reducing potential compatibility issues.

Please see the original Astroalign software at https://github.com/quatrope/astroalign

Citation:

Astroalign: A Python module for astronomical image registration.
Beroiz, M., Cabral, J. B., & Sanchez, B.
Astronomy & Computing, Volume 32, July 2020, 100384.

Installation

pip install aafitrans

Usage

It is similar to Astroalign's find_transform function. However, there are many parameters available for the user to modify.

from aafitrans import find_transform
transf, (matched_source_xy, matched_target_xy) = find_transform(source_xy, target_xy,
                                                                max_control_points=50,
                                                                ttype='similarity',
                                                                pixel_tolerance=2,
                                                                min_matches=4,
                                                                num_nearest_neighbors=8,
                                                                kdtree_search_radius=0.02,
                                                                n_samples=1,
                                                                get_best_fit=True,
                                                                seed=None)

WARNING: The Astroalign find_transform function takes both coordinate lists and images as input, while the Aafitrans find_transform function only takes coordinate lists as input.

Documentation for find_transform function

The find_transform function estimates the transform between two sets of control points, source and target. It returns a GeometricTransform object T (see scikit-image documentation for details) that maps pixel x, y indices from the source image s = (x, y) into the target (destination) image t = (x, y).

Parameters:

  • source: An iterable of (x, y) coordinates of the source control points.
  • target: An iterable of (x, y) coordinates of the target control points.
  • max_control_points: Default value is 50. The maximum number of control points to find the transformation.
  • ttype: Default value is 'similarity'. The type of transform to be estimated. One of the following should be set: {'euclidean', 'similarity', 'affine', 'piecewise-affine', 'projective', 'polynomial'}. For details, see scikit-image documentation.
  • pixel_tolerance: The maximum residual error for the estimated tranform.
  • min_matches: The minimum number of matches to be found. A value of 1 refers to 1 triangle, corresponding to 3 pairs of coordinates.
  • num_nearest_neighbors: The number of nearest neighbors of a given star (including itself) to construct the triangle invariants.
  • kdtree_search_radius: The default is 0.02. This radius is used to find nearest neighbours while conducting a KD tree search of invariant features.
  • n_samples: The minimum number of data points to fit the model to. A value of 1 refers to 1 triangle, corresponding to 3 pairs of coordinates.
  • get_best_fit: Whether to minimize the total error.
  • seed: Seed value for Numpy Random Generator.

Returns:

  • T: GeometricTransform object that maps pixel x, y indices from the source image s = (x, y) into the target (destination) image t = (x, y). It contains parameters of the transformation.
  • (source_pos_array, target_pos_array): A tuple of corresponding star positions in source and target.

Raises:

  • TypeError: If input type of source or target is not supported.
  • ValueError: If it cannot find more than 3 stars on any input.
  • MaxIterError: If no transformation is found.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc