AAT Analysis
This package helps with analyzing mobile AAT data.
Install
pip install aat_analysis
How to use
from aat_analysis.make_condition_templates import make_condition_templates
from aat_analysis.json_to_df import json_to_df
from aat_analysis.utils import merge_data
Define folder paths
- raw should include the raw data from your experiment
- external should include the contents of the Resources folder of your experiment app
- interim and processed can be empty
external_folder = "../data/external/"
interim_folder = "../data/interim/"
raw_data_folder = "../data/raw/"
processed_data_file = "../data/processed/data.csv"
Preprocess data
templates = make_condition_templates(external_folder)
json_to_df(raw_data_folder, external_folder, interim_folder, templates)
data = merge_data(interim_folder, drop=['interpolated','interpolated_gyro'])
data.to_csv(processed_data_file)
100%|█████████████████████████████████████████████| 3/3 [00:27<00:00, 9.24s/it]
AAT data
The selected columns below contain all data needed to calculate approach tendencies for each session, participant, and stimulus type. The additional data in the dataframe (not shown) are answers to other questions and some additional AAT variables.
data[['participant','condition','session','trial','is_practice','stimulus_set','stimulus','correct_response','response','accuracy','rt','force']]
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| participant | condition | session | trial | is_practice | stimulus_set | stimulus | correct_response | response | accuracy | rt | force |
---|
0 | kmahu0zq | condition_2 | final_session | 1 | False | None | None | None | NA | False | NaN | NaN |
---|
1 | kmahu0zq | condition_2 | introduction_session_2 | 1 | True | practice_food | stim_0154 | push | ND | False | NaN | 8.124186 |
---|
2 | kmahu0zq | condition_2 | introduction_session_2 | 2 | True | practice_objects | stim_1276 | pull | pull | True | 1206.0 | 12.130466 |
---|
3 | kmahu0zq | condition_2 | introduction_session_2 | 3 | True | practice_objects | stim_1264 | pull | ND | False | NaN | 1.651279 |
---|
4 | kmahu0zq | condition_2 | introduction_session_2 | 4 | True | practice_objects | stim_1277 | pull | pull | True | 629.0 | 18.342323 |
---|
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
---|
6166 | kmah8va6 | condition_2 | push_food_before_lunch_d5 | 132 | False | unhealthy_tempting | stim_0025 | pull | pull | True | 346.0 | 9.024626 |
---|
6167 | kmah8va6 | condition_2 | push_food_before_lunch_d5 | 133 | False | unhealthy_non_tempting | stim_0125 | pull | pull | True | 363.0 | 5.820239 |
---|
6168 | kmah8va6 | condition_2 | push_food_before_lunch_d5 | 134 | False | healthy_non_tempting | stim_0226 | pull | pull | True | 492.0 | 8.345508 |
---|
6169 | kmah8va6 | condition_2 | push_food_before_lunch_d5 | 135 | False | healthy_tempting | stim_0201 | pull | pull | True | 450.0 | 5.539470 |
---|
6170 | kmah8va6 | condition_2 | push_food_before_lunch_d5 | 136 | False | objects | stim_1035 | push | pull | False | 308.0 | 6.589124 |
---|
6171 rows × 12 columns