A collection of utils I commonly use for running my experiments.
It will:
- Notify on execution start, finish or failed.
- By default, Notifier will just log those out to
stdout
. - I prefer receiving those in Slack, though (see example below).
- Log parsed CLI flags from
absl.flags.FLAGS
and config values from config_file:get_config()
- Select registered task to run based on --task= CLI argument.
Minimal example
import os
from absl import logging
import tensorflow as tf
from absl_extra import tf_utils, tasks, notifier
@tasks.register_task(
notifier=notifier.SlackNotifier(slack_token=os.environ["SLACK_BOT_TOKEN"], channel_id=os.environ["CHANNEL_ID"])
)
@tf_utils.requires_gpu
def main() -> None:
if tf_utils.supports_mixed_precision():
tf.keras.mixed_precision.set_global_policy("mixed_float16")
with tf_utils.make_gpu_strategy().scope():
logging.info("Doing some heavy lifting...")
if __name__ == "__main__":
tasks.run()
flax_utils.py
- Common utilities used for training flax models, which I got tired of copy-pasting in every project.