Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

agcounts

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

agcounts

This project contains code to generate activity counts from accelerometer data.

  • 0.2.6
  • PyPI
  • Socket score

Maintainers
1

agcounts

Tests

A python package for extracting actigraphy counts from accelerometer data.

Install

pip install agcounts

Test

Download test data:

curl -L https://github.com/actigraph/agcounts/files/8247896/GT3XPLUS-AccelerationCalibrated-1x8x0.NEO1G75911139.2000-01-06-13-00-00-000-P0000.sensor.csv.gz --output data.csv.gz

Run a simple test

import pandas as pd
import numpy as np
from agcounts.extract import get_counts


def get_counts_csv(
    file,
    freq: int,
    epoch: int,
    fast: bool = True,
    verbose: bool = False,
    time_column: str = None,
):
    if verbose:
        print("Reading in CSV", flush=True)
    raw = pd.read_csv(file, skiprows=0)
    if time_column is not None:
        ts = raw[time_column]
        ts = pd.to_datetime(ts)
        time_freq = str(epoch) + "S"
        ts = ts.dt.round(time_freq)
        ts = ts.unique()
        ts = pd.DataFrame(ts, columns=[time_column])
    raw = raw[["X", "Y", "Z"]]
    if verbose:
        print("Converting to array", flush=True)
    raw = np.array(raw)
    if verbose:
        print("Getting Counts", flush=True)
    counts = get_counts(raw, freq=freq, epoch=epoch, fast=fast, verbose=verbose)
    del raw
    counts = pd.DataFrame(counts, columns=["Axis1", "Axis2", "Axis3"])
    counts["AC"] = (
        counts["Axis1"] ** 2 + counts["Axis2"] ** 2 + counts["Axis3"] ** 2
    ) ** 0.5
    ts = ts[0 : counts.shape[0]]
    if time_column is not None:
        counts = pd.concat([ts, counts], axis=1)
    return counts


def convert_counts_csv(
    file,
    outfile,
    freq: int,
    epoch: int,
    fast: bool = True,
    verbose: bool = False,
    time_column: str = None,
):
    counts = get_counts_csv(
        file, freq=80, epoch=60, verbose=True, time_column=time_column
    )
    counts.to_csv(outfile, index=False)
    return counts


counts = get_counts_csv("data.csv.gz", freq=80, epoch=60)
counts = convert_counts_csv(
    "data.csv.gz",
    outfile="counts.csv.gz",
    freq=80,
    epoch=60,
    verbose=True,
    time_column="HEADER_TIMESTAMP",
)

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc