Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Aggify is a Python library to generate MongoDB aggregation pipelines
Aggify is a Python library for generating MongoDB aggregation pipelines, designed to work seamlessly with Mongoengine. This library simplifies the process of constructing complex MongoDB queries and aggregations using an intuitive and organized interface.
You can install Aggify using pip:
pip install aggify
Here's a code snippet that demonstrates how to use Aggify to construct a MongoDB aggregation pipeline:
from mongoengine import Document, fields
class AccountDocument(Document):
username = fields.StringField()
display_name = fields.StringField()
phone = fields.StringField()
is_verified = fields.BooleanField()
disabled_at = fields.LongField()
deleted_at = fields.LongField()
banned_at = fields.LongField()
class FollowAccountEdge(Document):
start = fields.ReferenceField("AccountDocument")
end = fields.ReferenceField("AccountDocument")
accepted = fields.BooleanField()
meta = {
"collection": "edge.follow.account",
}
class BlockEdge(Document):
start = fields.ObjectIdField()
end = fields.ObjectIdField()
meta = {
"collection": "edge.block",
}
Aggify query:
from models import *
from aggify import Aggify, F, Q
from bson import ObjectId
aggify = Aggify(AccountDocument)
pipelines = list(
(
aggify.filter(
phone__in=[],
id__ne=ObjectId(),
disabled_at=None,
banned_at=None,
deleted_at=None,
network_id=ObjectId(),
)
.lookup(
FollowAccountEdge,
let=["id"],
query=[Q(start__exact=ObjectId()) & Q(end__exact="id")],
as_name="followed",
)
.lookup(
BlockEdge,
let=["id"],
as_name="blocked",
query=[
(Q(start__exact=ObjectId()) & Q(end__exact="id"))
| (Q(end__exact=ObjectId()) & Q(start__exact="id"))
],
)
.filter(followed=[], blocked=[])
.group("username")
.annotate(annotate_name="phone", accumulator="first", f=F("phone") + 10)
.redact(
value1="phone",
condition="==",
value2="132",
then_value="keep",
else_value="prune",
)
.project(username=0)[5:10]
.out(coll="account")
)
)
Mongoengine equivalent query:
[
{
"$match": {
"phone": {"$in": []},
"_id": {"$ne": ObjectId("65486eae04cce43c5469e0f1")},
"disabled_at": None,
"banned_at": None,
"deleted_at": None,
"network_id": ObjectId("65486eae04cce43c5469e0f2"),
}
},
{
"$lookup": {
"from": "edge.follow.account",
"let": {"id": "$_id"},
"pipeline": [
{
"$match": {
"$expr": {
"$and": [
{
"$eq": [
"$start",
ObjectId("65486eae04cce43c5469e0f3"),
]
},
{"$eq": ["$end", "$$id"]},
]
}
}
}
],
"as": "followed",
}
},
{
"$lookup": {
"from": "edge.block",
"let": {"id": "$_id"},
"pipeline": [
{
"$match": {
"$expr": {
"$or": [
{
"$and": [
{
"$eq": [
"$start",
ObjectId("65486eae04cce43c5469e0f4"),
]
},
{"$eq": ["$end", "$$id"]},
]
},
{
"$and": [
{
"$eq": [
"$end",
ObjectId("65486eae04cce43c5469e0f5"),
]
},
{"$eq": ["$start", "$$id"]},
]
},
]
}
}
}
],
"as": "blocked",
}
},
{"$match": {"followed": [], "blocked": []}},
{"$group": {"_id": "$username", "phone": {"$first": {"$add": ["$phone", 10]}}}},
{
"$redact": {
"$cond": {
"if": {"$eq": ["phone", "132"]},
"then": "$$KEEP",
"else": "$$PRUNE",
}
}
},
{"$project": {"username": 0}},
{"$skip": 5},
{"$limit": 5},
{"$out": "account"},
]
In the sample usage above, you can see how Aggify simplifies the construction of MongoDB aggregation pipelines by allowing you to chain filters, lookups, and other operations to build complex queries. For more details and examples, please refer to the documentation and codebase.
FAQs
A MongoDB aggregation generator for Mongoengine
We found that aggify demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.