AISHA Lib: A High-Level Abstraction for Building AI Assistants
In the evolving landscape of artificial intelligence, the development of smart assistants has become increasingly prevalent. To streamline this process, the AISHA (AI Smart Human Assistant) Lib offers a high-level abstraction designed for creating AI assistants. This versatile library supports various large language models (LLMs) and different LLM backends, providing developers with a powerful and flexible toolset.
Environment
To create a Python virtual environment, use the command:
conda env create -f environment.yml
Installation
pip install aishalib
Supported Models
The following LLM models are supported:
- microsoft/Phi-3-medium-128k-instruct
- CohereForAI/c4ai-command-r-v01
- google/gemma-2-27b-it
- Qwen/Qwen2-72B-Instruct
LLM backends
The following LLM backends are supported:
Telegram bot example
import os
from aishalib.aishalib import Aisha
from aishalib.llmbackend import LlamaCppBackend
from aishalib.tools import parseToolResponse
from aishalib.utils import get_time_string
from aishalib.memory import SimpleMemory
from telegram import Update
from telegram.ext import Application, MessageHandler, ContextTypes, filters
BOT_NAME = os.environ['BOT_NAME']
TG_TOKEN = os.environ['TG_TOKEN']
PERSISTENCE_DIR = BOT_NAME + "/"
if not os.path.exists(PERSISTENCE_DIR):
os.makedirs(PERSISTENCE_DIR)
memory = SimpleMemory(PERSISTENCE_DIR + "memory.json")
def get_aisha(aisha_context_key, tg_context):
if aisha_context_key not in tg_context.user_data:
backend = LlamaCppBackend("http://127.0.0.1:8088/completion", max_predict=256)
aisha = Aisha(backend, "google/gemma-2-27b-it", prompt_file="system_prompt_example.txt", max_context=8192)
tg_context.user_data[aisha_context_key] = aisha
aisha = tg_context.user_data[aisha_context_key]
aisha.load_context(aisha_context_key)
return aisha
async def process_message(update: Update, context: ContextTypes.DEFAULT_TYPE):
chat_id = update.effective_chat.id
user_id = str(update.message.from_user.id)
user_name = memory.get_memory_value("names:" + user_id, "")
computed_name = user_name if user_name else f"id_{user_id}"
message = update.message.text
aisha = get_aisha(PERSISTENCE_DIR + str(chat_id), context)
aisha.add_user_request(f"{computed_name}: {message}", meta_info=get_time_string())
tools_response = aisha.completion(temp=0.7, top_p=0.9)
aisha.save_context(PERSISTENCE_DIR + str(chat_id))
tools = parseToolResponse(tools_response, ["directly_answer", "save_human_name", "pass"])
if "save_human_name" in tools:
user_name = tools["save_human_name"]
memory.save_memory_value("names:" + user_name.split(":")[0].replace("id_", ""), user_name.split(":")[1])
if "pass" not in tools:
await context.bot.send_message(chat_id=chat_id,
text=tools["directly_answer"],
reply_to_message_id=update.message.message_id)
application = Application.builder().token(TG_TOKEN).build()
application.add_handler(MessageHandler(filters.TEXT & ~filters.COMMAND, process_message))
application.run_polling()
Run Llama.CPP Server backend
llama.cpp/build/bin/llama-server -m model_q5_k_m.gguf -ngl 99 -fa -c 4096 --host 0.0.0.0 --port 8000
Install CUDA toolkit for Llama.cpp compilation
Please note that the toolkit version must match the driver version. The driver version can be found using the nvidia-smi command.
To install toolkit for CUDA 12.5 you need to run the following commands:
CUDA_TOOLKIT_VERSION=12-5
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt update
sudo apt -y install cuda-toolkit-${CUDA_TOOLKIT_VERSION}
echo -e '
export CUDA_HOME=/usr/local/cuda
export PATH=${CUDA_HOME}/bin:${PATH}
export LD_LIBRARY_PATH=${CUDA_HOME}/lib64:$LD_LIBRARY_PATH
' >> ~/.bashrc