Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

anovos

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

anovos

An Open Source tool for Feature Engineering in Machine Learning

  • 1.1.0
  • PyPI
  • Socket score

Maintainers
1

anovos-dark-horizontal

Anovos

Release Latest Docs Latest License twitter Slack

Anovos is an open source library for feature engineering at scale. Built by data scientists & ML Engineers for the data science community, it provides all the capabilities required for data ingestion, data analysis, data drift & data stability analysis, feature recommendation and feature composition. In addition, it automatically produces easily interpretable professional data reports that help users understand the nature of data at first sight and further enable data scientists to identify and engineer features.

Leveraging the power of Apache Spark behind the scenes, Anovos improves data scientists' productivity and helps them build more resilient and better performing models.

Quick Start

The easiest way to try out Anovos and explore its capabilities is through the provided examples that you can run via Docker without the need to install anything on your local machine.

# Launch an anovos-examples Docker container
sudo docker run -p 8888:8888 anovos/anovos-examples-3.2.2:latest

To reach the Jupyter environment, open the link to http://127.0.0.1:8888/?token... generated by the Jupyter NotebookApp.

If you're not familiar with Anovos or feature engineering, the Getting Started with Anovos guide is a good place to begin your journey. You can find it in the /guides folder within the Jupyter environment.

For more detailed instructions on how to install Docker and how to troubleshoot potential issues, see the examples README.

Using Anovos

Requirements

To use Anovos, you need compatible versions of Apache Spark, Java and Python.

Currently, we officially support the following combinations:

  • Apache Spark 2.4.x on Java 8 with Python 3.7.x
  • Apache Spark 3.1.x on Java 11 with Python 3.9.x
  • Apache Spark 3.2.x on Java 11 with Python 3.10.x

To see what we're currently testing, see this configuration.

Installation

You can install the latest release of Anovos directly through PyPI:

pip install anovos

Documentation

We provide a comprehensive documentation at docs.anovos.ai that includes user guides as well as a detailed API documentation.

For usage examples, see the provided interactive guides and Jupyter notebooks as well as the Spark demo.

Overview

Anovos Architecture Diagram

Roadmap

Anovos has designed for to support any feature engineering tasks in a scalable form. To see what's planned for the upcoming releases, see our roadmap.

Development Version

To try out the latest additions to Anovos, you can install it directly from GitHub:

pip install git+https://github.com/anovos/anovos.git

Please note that this version is frequently updated and might not be fully compatible with the documentation available at docs.anovos.ai.

Contribute

We're always happy to discuss and accept improvements to Anovos. To get started, please refer to our Contributing to Anovos page in the documentation.

To start coding, clone this repository, install both the regular and development requirements, and set up the pre-commit hooks:

git clone https://github.com/anovos/anovos.git
cd anovos/
pip install -r requirements.txt
pip install -r dev_requirements.txt
pre-commit install

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc