Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

argmin-testfunctions-py

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

argmin-testfunctions-py

Test functions for optimization algorithms

  • 0.0.1
  • PyPI
  • Socket score

Maintainers
1

argmin-testfunctions-py

Website | Book | Docs (latest release) | Docs (main branch)

PyPI GitHub Actions workflow status License argmin Discord

This Python module makes the test functions of the argmin_testfunctions Rust crate available in Python. For each test function the derivative and Hessian are available as well. While most functions are two-dimensional, some allow an arbitrary number of parameters. For some functions additional optional parameters are accessible, which can be used to modify the shape of the test function. For details on the individual test functions please consult the docs of the Rust library, either for the latest release or the current main branch.

Examples

from argmin_testfunctions_py import *

# Ackley (arbitrary number of parameters)
c = ackley([0.1, 0.2, 0.3, 0.4])
g = ackley_derivative([0.1, 0.2, 0.3, 0.4])
h = ackley_hessian([0.1, 0.2, 0.3, 0.4])

# Ackley with custom (optional) parameters a, b, and c.
c = ackley([0.1, 0.2, 0.3, 0.4], a = 10.0, b = 0.3, c = 3.14)
g = ackley_derivative([0.1, 0.2, 0.3, 0.4], a = 10.0, b = 0.3, c = 3.14)
h = ackley_hessian([0.1, 0.2, 0.3, 0.4], a = 10.0, b = 0.3, c = 3.14)

# Beale
c = beale([0.1, 0.2])
g = beale_derivative([0.1, 0.2])
h = beale_hessian([0.1, 0.2])

# Booth
c = booth([0.1, 0.2])
g = booth_derivative([0.1, 0.2])
h = booth_hessian([0.1, 0.2])

# Bukin No. 6
c = bukin_n6([0.1, 0.2])
g = bukin_n6_derivative([0.1, 0.2])
h = bukin_n6_hessian([0.1, 0.2])

# Cross-in-tray
c = cross_in_tray([0.1, 0.2])
g = cross_in_tray_derivative([0.1, 0.2])
h = cross_in_tray_hessian([0.1, 0.2])

# Easom
c = easom([0.1, 0.2])
g = easom_derivative([0.1, 0.2])
h = easom_hessian([0.1, 0.2])

# Eggholder
c = eggholder([0.1, 0.2])
g = eggholder_derivative([0.1, 0.2])
h = eggholder_hessian([0.1, 0.2])

# Goldstein-Price
c = goldsteinprice([0.1, 0.2])
g = goldsteinprice_derivative([0.1, 0.2])
h = goldsteinprice_hessian([0.1, 0.2])

# Himmelblau
c = himmelblau([0.1, 0.2])
g = himmelblau_derivative([0.1, 0.2])
h = himmelblau_hessian([0.1, 0.2])

# Holder-Table
c = holder_table([0.1, 0.2])
g = holder_table_derivative([0.1, 0.2])
h = holder_table_hessian([0.1, 0.2])

# Levy (arbitrary number of parameters)
c = levy([0.1, 0.2, 0.3, 0.4])
g = levy_derivative([0.1, 0.2, 0.3, 0.4])
h = levy_hessian([0.1, 0.2, 0.3, 0.4])

# Levy No. 13
c = levy_n13([0.1, 0.2])
g = levy_n13_derivative([0.1, 0.2])
h = levy_n13_hessian([0.1, 0.2])

# Matyas
c = matyas([0.1, 0.2])
g = matyas_derivative([0.1, 0.2])
h = matyas_hessian([0.1, 0.2])

# McCorminck
c = mccorminck([0.1, 0.2])
g = mccorminck_derivative([0.1, 0.2])
h = mccorminck_hessian([0.1, 0.2])

# Picheny
c = picheny([0.1, 0.2])
g = picheny_derivative([0.1, 0.2])
h = picheny_hessian([0.1, 0.2])

# Rastrigin (with arbitrary number of parameters)
c = rastrigin([0.1, 0.2, 0.3, 0.4])
g = rastrigin_derivative([0.1, 0.2, 0.3, 0.4])
h = rastrigin_hessian([0.1, 0.2, 0.3, 0.4])

# Rastrigin with custom (optional) parameter a.
c = rastrigin([0.1, 0.2, 0.3, 0.4], a = 5.0)
g = rastrigin_derivative([0.1, 0.2, 0.3, 0.4], a = 5.0)
h = rastrigin_hessian([0.1, 0.2, 0.3, 0.4], a = 5.0)

# Rosenbrock (with arbitrary number of parameters)
c = rosenbrock([0.1, 0.2, 0.3, 0.4])
g = rosenbrock_derivative([0.1, 0.2, 0.3, 0.4])
h = rosenbrock_hessian([0.1, 0.2, 0.3, 0.4])

# Rosenbrock with custom (optional) parameters a and b.
c = rosenbrock([0.1, 0.2, 0.3, 0.4], a = 5.0, b = 200.0)
g = rosenbrock_derivative([0.1, 0.2, 0.3, 0.4], a = 5.0, b = 200.0)
h = rosenbrock_hessian([0.1, 0.2, 0.3, 0.4], a = 5.0, b = 200.0)

# Schaffer No. 2
c = schaffer_n2([0.1, 0.2])
g = schaffer_n2_derivative([0.1, 0.2])
h = schaffer_n2_hessian([0.1, 0.2])

# Schaffer No. 4
c = schaffer_n4([0.1, 0.2])
g = schaffer_n4_derivative([0.1, 0.2])
h = schaffer_n4_hessian([0.1, 0.2])

# Sphere (with arbitrary number of parameters)
c = sphere([0.1, 0.2, 0.3, 0.4])
g = sphere_derivative([0.1, 0.2, 0.3, 0.4])
h = sphere_hessian([0.1, 0.2, 0.3, 0.4])

# Styblinski-Tang
c = styblinski_tang([0.1, 0.2])
g = styblinski_tang_derivative([0.1, 0.2])
h = styblinski_tang_hessian([0.1, 0.2])

# Three-hump-camel
c = threehumpcamel([0.1, 0.2])
g = threehumpcamel_derivative([0.1, 0.2])
h = threehumpcamel_hessian([0.1, 0.2])

License

Licensed under either of

at your option.

Contribution

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc