Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

astro-prospector

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

astro-prospector

Stellar Population Inference from Spectra and SEDs

  • 1.4.0
  • Source
  • PyPI
  • Socket score

Maintainers
1

Docs Tests arXiv LICENSE

Purpose

Conduct principled inference of stellar population properties from photometric and/or spectroscopic data. Prospector allows you to:

  • Infer high-dimensional stellar population properties using parametric or highly flexible SFHs (with nested or ensemble Monte Carlo sampling)

  • Combine photometric and spectroscopic data from the UV to Far-IR rigorously using a flexible spectroscopic calibration model and forward modeling many aspects of spectroscopic data analysis.

Read the documentation and the code paper.

Installation

See installation for requirements and dependencies. The documentation includes a tutorial and demos.

To install to a conda environment with dependencies, see conda_install.sh. To install just Prospector (stable release):

python -m pip install astro-prospector

To install the latest development version:

cd <install_dir>
git clone https://github.com/bd-j/prospector
cd prospector
python -m pip install .

Then, in Python

import prospect

Citation

If you use this code, please reference this paper:

@ARTICLE{2021ApJS..254...22J,
       author = {{Johnson}, Benjamin D. and {Leja}, Joel and {Conroy}, Charlie and {Speagle}, Joshua S.},
        title = "{Stellar Population Inference with Prospector}",
      journal = {\apjs},
     keywords = {Galaxy evolution, Spectral energy distribution, Astronomy data modeling, 594, 2129, 1859, Astrophysics - Astrophysics of Galaxies, Astrophysics - Instrumentation and Methods for Astrophysics},
         year = 2021,
        month = jun,
       volume = {254},
       number = {2},
          eid = {22},
        pages = {22},
          doi = {10.3847/1538-4365/abef67},
archivePrefix = {arXiv},
       eprint = {2012.01426},
 primaryClass = {astro-ph.GA},
       adsurl = {https://ui.adsabs.harvard.edu/abs/2021ApJS..254...22J},
      adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

and make sure to cite the dependencies as listed in installation

Example

Inference with mock broadband data, showing the change in posteriors as the number of photometric bands is increased. Demonstration of posterior inference with increasing number of photometric bands

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc