Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Simplify. Unify. Amplify.
Feature | AutoLLM | LangChain | LlamaIndex | LiteLLM |
---|---|---|---|---|
100+ LLMs | ✅ | ✅ | ✅ | ✅ |
Unified API | ✅ | ❌ | ❌ | ✅ |
20+ Vector Databases | ✅ | ✅ | ✅ | ❌ |
Cost Calculation (100+ LLMs) | ✅ | ❌ | ❌ | ✅ |
1-Line RAG LLM Engine | ✅ | ❌ | ❌ | ❌ |
1-Line FastAPI | ✅ | ❌ | ❌ | ❌ |
easily install autollm package with pip in Python>=3.8 environment.
pip install autollm
for built-in data readers (github, pdf, docx, ipynb, epub, mbox, websites..), install with:
pip install autollm[readers]
video tutorials:
blog posts:
colab notebooks:
>>> from autollm import AutoQueryEngine, read_files_as_documents
>>> documents = read_files_as_documents(input_dir="path/to/documents")
>>> query_engine = AutoQueryEngine.from_defaults(documents)
>>> response = query_engine.query(
... "Why did SafeVideo AI develop this project?"
... )
>>> response.response
"Because they wanted to deploy rag based llm apis in no time!"
>>> from autollm import AutoQueryEngine
>>> query_engine = AutoQueryEngine.from_defaults(
... documents=documents,
... llm_model="gpt-3.5-turbo",
... llm_max_tokens="256",
... llm_temperature="0.1",
... system_prompt='...',
... query_wrapper_prompt='...',
... enable_cost_calculator=True,
... embed_model="huggingface/BAAI/bge-large-zh",
... chunk_size=512,
... chunk_overlap=64,
... context_window=4096,
... similarity_top_k=3,
... response_mode="compact",
... structured_answer_filtering=False,
... vector_store_type="LanceDBVectorStore",
... lancedb_uri="./lancedb",
... lancedb_table_name="vectors",
... exist_ok=True,
... overwrite_existing=False,
... )
>>> response = query_engine.query("Who is SafeVideo AI?")
>>> print(response.response)
"A startup that provides self hosted AI API's for companies!"
>>> import uvicorn
>>> from autollm import AutoFastAPI
>>> app = AutoFastAPI.from_query_engine(query_engine)
>>> uvicorn.run(app, host="0.0.0.0", port=8000)
INFO: Started server process [12345]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://http://0.0.0.0:8000/
>>> from autollm import AutoFastAPI
>>> app = AutoFastAPI.from_query_engine(
... query_engine,
... api_title='...',
... api_description='...',
... api_version='...',
... api_term_of_service='...',
)
>>> uvicorn.run(app, host="0.0.0.0", port=8000)
INFO: Started server process [12345]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://http://0.0.0.0:8000/
>>> from autollm import AutoQueryEngine
>>> os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key"
>>> llm_model = "huggingface/WizardLM/WizardCoder-Python-34B-V1.0"
>>> llm_api_base = "https://my-endpoint.huggingface.cloud"
>>> AutoQueryEngine.from_defaults(
... documents='...',
... llm_model=llm_model,
... llm_api_base=llm_api_base,
... )
huggingface - ollama example:
>>> from autollm import AutoQueryEngine
>>> llm_model = "ollama/llama2"
>>> llm_api_base = "http://localhost:11434"
>>> AutoQueryEngine.from_defaults(
... documents='...',
... llm_model=llm_model,
... llm_api_base=llm_api_base,
... )
microsoft azure - openai example:
>>> from autollm import AutoQueryEngine
>>> os.environ["AZURE_API_KEY"] = ""
>>> os.environ["AZURE_API_BASE"] = ""
>>> os.environ["AZURE_API_VERSION"] = ""
>>> llm_model = "azure/<your_deployment_name>")
>>> AutoQueryEngine.from_defaults(
... documents='...',
... llm_model=llm_model
... )
google - vertexai example:
>>> from autollm import AutoQueryEngine
>>> os.environ["VERTEXAI_PROJECT"] = "hardy-device-38811" # Your Project ID`
>>> os.environ["VERTEXAI_LOCATION"] = "us-central1" # Your Location
>>> llm_model = "text-bison@001"
>>> AutoQueryEngine.from_defaults(
... documents='...',
... llm_model=llm_model
... )
aws bedrock - claude v2 example:
>>> from autollm import AutoQueryEngine
>>> os.environ["AWS_ACCESS_KEY_ID"] = ""
>>> os.environ["AWS_SECRET_ACCESS_KEY"] = ""
>>> os.environ["AWS_REGION_NAME"] = ""
>>> llm_model = "anthropic.claude-v2"
>>> AutoQueryEngine.from_defaults(
... documents='...',
... llm_model=llm_model
... )
🌟Pro Tip: autollm
defaults to lancedb
as the vector store:
it's setup-free, serverless, and 100x more cost-effective!
>>> from autollm import AutoQueryEngine
>>> import qdrant_client
>>> vector_store_type = "QdrantVectorStore"
>>> client = qdrant_client.QdrantClient(
... url="http://<host>:<port>",
... api_key="<qdrant-api-key>"
... )
>>> collection_name = "quickstart"
>>> AutoQueryEngine.from_defaults(
... documents='...',
... vector_store_type=vector_store_type,
... client=client,
... collection_name=collection_name,
... )
>>> from autollm import AutoServiceContext
>>> service_context = AutoServiceContext(enable_cost_calculation=True)
# Example verbose output after query
Embedding Token Usage: 7
LLM Prompt Token Usage: 1482
LLM Completion Token Usage: 47
LLM Total Token Cost: $0.002317
>>> from autollm import AutoFastAPI
>>> app = AutoFastAPI.from_config(config_path, env_path)
Here, config
and env
should be replaced by your configuration and environment file paths.
After creating your FastAPI app, run the following command in your terminal to get it up and running:
uvicorn main:app
switching from Llama-Index? We've got you covered.
>>> from llama_index import StorageContext, ServiceContext, VectorStoreIndex
>>> from llama_index.vectorstores import LanceDBVectorStore
>>> from autollm import AutoQueryEngine
>>> vector_store = LanceDBVectorStore(uri="./.lancedb")
>>> storage_context = StorageContext.from_defaults(vector_store=vector_store)
>>> service_context = ServiceContext.from_defaults()
>>> index = VectorStoreIndex.from_documents(
documents=documents,
storage_context=storage_contex,
service_context=service_context,
)
>>> query_engine = AutoQueryEngine.from_instances(index)
Q: Can I use this for commercial projects?
A: Yes, AutoLLM is licensed under GNU Affero General Public License (AGPL 3.0), which allows for commercial use under certain conditions. Contact us for more information.
our roadmap outlines upcoming features and integrations to make autollm the most extensible and powerful base package for large language model applications.
1-line Gradio app creation and deployment
Budget based email notification
Automated LLM evaluation
Add more quickstart apps on pdf-chat, documentation-chat, academic-paper-analysis, patent-analysis and more!
autollm is available under the GNU Affero General Public License (AGPL 3.0).
for more information, support, or questions, please contact:
love autollm? star the repo or contribute and help us make it even better! see our contributing guidelines for more information.
FAQs
Ship RAG based LLM Web API's, in seconds.
We found that autollm demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.