Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
BERT, published by Google, is new way to obtain pre-trained language model word representation. Many NLP tasks are benefit from BERT to get the SOTA.
The goal of this project is to obtain the token embedding from BERT's pre-trained model. In this way, instead of building and do fine-tuning for an end-to-end NLP model, you can build your model by just utilizing or token embedding.
This project is implemented with @MXNet. Special thanks to @gluon-nlp team.
pip install bert-embedding
# If you want to run on GPU machine, please install `mxnet-cu92`.
pip install mxnet-cu92
from bert_embedding import BertEmbedding
bert_abstract = """We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers.
Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers.
As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications.
BERT is conceptually simple and empirically powerful.
It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%."""
sentences = bert_abstract.split('\n')
bert_embedding = BertEmbedding()
result = bert_embedding(sentences)
If you want to use GPU, please import mxnet and set context
import mxnet as mx
from bert_embedding import BertEmbedding
...
ctx = mx.gpu(0)
bert = BertEmbedding(ctx=ctx)
This result is a list of a tuple containing (tokens, tokens embedding)
For example:
first_sentence = result[0]
first_sentence[0]
# ['we', 'introduce', 'a', 'new', 'language', 'representation', 'model', 'called', 'bert', ',', 'which', 'stands', 'for', 'bidirectional', 'encoder', 'representations', 'from', 'transformers']
len(first_sentence[0])
# 18
len(first_sentence[1])
# 18
first_token_in_first_sentence = first_sentence[1]
first_token_in_first_sentence[1]
# array([ 0.4805648 , 0.18369392, -0.28554988, ..., -0.01961522,
# 1.0207764 , -0.67167974], dtype=float32)
first_token_in_first_sentence[1].shape
# (768,)
There are three ways to handle oov, avg (default), sum, and last. This can be specified in encoding.
...
bert_embedding = BertEmbedding()
bert_embedding(sentences, 'sum')
...
book_corpus_wiki_en_uncased | book_corpus_wiki_en_cased | wiki_multilingual | wiki_multilingual_cased | wiki_cn | |
---|---|---|---|---|---|
bert_12_768_12 | ✓ | ✓ | ✓ | ✓ | ✓ |
bert_24_1024_16 | x | ✓ | x | x | x |
Example of using the large pre-trained BERT model from Google
from bert_embedding import BertEmbedding
bert_embedding = BertEmbedding(model='bert_24_1024_16', dataset_name='book_corpus_wiki_en_cased')
Source: gluonnlp
FAQs
BERT token level embedding with MxNet
We found that bert-embedding demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.