BERT for TensorFlow v2
|Build Status| |Coverage Status| |Version Status| |Python Versions| |Downloads|
This repo contains a TensorFlow 2.0
_ Keras
_ implementation of google-research/bert
_
with support for loading of the original pre-trained weights
_,
and producing activations numerically identical to the one calculated by the original model.
ALBERT
_ and adapter-BERT
_ are also supported by setting the corresponding
configuration parameters (shared_layer=True
, embedding_size
for ALBERT
_
and adapter_size
for adapter-BERT
_). Setting both will result in an adapter-ALBERT
by sharing the BERT parameters across all layers while adapting every layer with layer specific adapter.
The implementation is build from scratch using only basic tensorflow operations,
following the code in google-research/bert/modeling.py
_
(but skipping dead code and applying some simplifications). It also utilizes kpe/params-flow
_ to reduce
common Keras boilerplate code (related to passing model and layer configuration arguments).
bert-for-tf2
_ should work with both TensorFlow 2.0
_ and TensorFlow 1.14
_ or newer.
NEWS
-
30.Jul.2020 - VERBOSE=0
env variable for suppressing stdout output.
-
06.Apr.2020 - using latest py-params
introducing WithParams
base for Layer
and Model
. See news in kpe/py-params
_ for how to update (_construct()
signature has change and
requires calling super().__construct()
).
-
06.Jan.2020 - support for loading the tar format weights from google-research/ALBERT
.
-
18.Nov.2019 - ALBERT tokenization added (make sure to import as from bert import albert_tokenization
or from bert import bert_tokenization
).
-
08.Nov.2019 - using v2 per default when loading the TFHub/albert
_ weights of google-research/ALBERT
_.
-
05.Nov.2019 - minor ALBERT word embeddings refactoring (word_embeddings_2
-> word_embeddings_projector
) and related parameter freezing fixes.
-
04.Nov.2019 - support for extra (task specific) token embeddings using negative token ids.
-
29.Oct.2019 - support for loading of the pre-trained ALBERT weights released by google-research/ALBERT
_ at TFHub/albert
_.
-
11.Oct.2019 - support for loading of the pre-trained ALBERT weights released by brightmart/albert_zh ALBERT for Chinese
_.
-
10.Oct.2019 - support for ALBERT
_ through the shared_layer=True
and embedding_size=128
params.
-
03.Sep.2019 - walkthrough on fine tuning with adapter-BERT and storing the
fine tuned fraction of the weights in a separate checkpoint (see tests/test_adapter_finetune.py
).
-
02.Sep.2019 - support for extending the token type embeddings of a pre-trained model
by returning the mismatched weights in load_stock_weights()
(see tests/test_extend_segments.py
).
-
25.Jul.2019 - there are now two colab notebooks under examples/
showing how to
fine-tune an IMDB Movie Reviews sentiment classifier from pre-trained BERT weights
using an adapter-BERT
_ model architecture on a GPU or TPU in Google Colab.
-
28.Jun.2019 - v.0.3.0 supports adapter-BERT
_ (google-research/adapter-bert
_)
for "Parameter-Efficient Transfer Learning for NLP", i.e. fine-tuning small overlay adapter
layers over BERT's transformer encoders without changing the frozen BERT weights.
LICENSE
MIT. See License File <https://github.com/kpe/bert-for-tf2/blob/master/LICENSE.txt>
_.
Install
bert-for-tf2
is on the Python Package Index (PyPI):
::
pip install bert-for-tf2
Usage
BERT in bert-for-tf2
is implemented as a Keras layer. You could instantiate it like this:
.. code:: python
from bert import BertModelLayer
l_bert = BertModelLayer(**BertModelLayer.Params(
vocab_size = 16000, # embedding params
use_token_type = True,
use_position_embeddings = True,
token_type_vocab_size = 2,
num_layers = 12, # transformer encoder params
hidden_size = 768,
hidden_dropout = 0.1,
intermediate_size = 4*768,
intermediate_activation = "gelu",
adapter_size = None, # see arXiv:1902.00751 (adapter-BERT)
shared_layer = False, # True for ALBERT (arXiv:1909.11942)
embedding_size = None, # None for BERT, wordpiece embedding size for ALBERT
name = "bert" # any other Keras layer params
))
or by using the bert_config.json
from a pre-trained google model
_:
.. code:: python
import bert
model_dir = ".models/uncased_L-12_H-768_A-12"
bert_params = bert.params_from_pretrained_ckpt(model_dir)
l_bert = bert.BertModelLayer.from_params(bert_params, name="bert")
now you can use the BERT layer in your Keras model like this:
.. code:: python
from tensorflow import keras
max_seq_len = 128
l_input_ids = keras.layers.Input(shape=(max_seq_len,), dtype='int32')
l_token_type_ids = keras.layers.Input(shape=(max_seq_len,), dtype='int32')
using the default token_type/segment id 0
output = l_bert(l_input_ids) # output: [batch_size, max_seq_len, hidden_size]
model = keras.Model(inputs=l_input_ids, outputs=output)
model.build(input_shape=(None, max_seq_len))
provide a custom token_type/segment id as a layer input
output = l_bert([l_input_ids, l_token_type_ids]) # [batch_size, max_seq_len, hidden_size]
model = keras.Model(inputs=[l_input_ids, l_token_type_ids], outputs=output)
model.build(input_shape=[(None, max_seq_len), (None, max_seq_len)])
if you choose to use adapter-BERT
_ by setting the adapter_size
parameter,
you would also like to freeze all the original BERT layers by calling:
.. code:: python
l_bert.apply_adapter_freeze()
and once the model has been build or compiled, the original pre-trained weights
can be loaded in the BERT layer:
.. code:: python
import bert
bert_ckpt_file = os.path.join(model_dir, "bert_model.ckpt")
bert.load_stock_weights(l_bert, bert_ckpt_file)
N.B. see tests/test_bert_activations.py
_ for a complete example.
FAQ
- In all the examlpes bellow, please note the line:
.. code:: python
use in a Keras Model here, and call model.build()
for a quick test, you can replace it with something like:
.. code:: python
model = keras.models.Sequential([
keras.layers.InputLayer(input_shape=(128,)),
l_bert,
keras.layers.Lambda(lambda x: x[:, 0, :]),
keras.layers.Dense(2)
])
model.build(input_shape=(None, 128))
- How to use BERT with the
google-research/bert
_ pre-trained weights?
.. code:: python
model_name = "uncased_L-12_H-768_A-12"
model_dir = bert.fetch_google_bert_model(model_name, ".models")
model_ckpt = os.path.join(model_dir, "bert_model.ckpt")
bert_params = bert.params_from_pretrained_ckpt(model_dir)
l_bert = bert.BertModelLayer.from_params(bert_params, name="bert")
use in a Keras Model here, and call model.build()
bert.load_bert_weights(l_bert, model_ckpt) # should be called after model.build()
- How to use ALBERT with the
google-research/ALBERT
_ pre-trained weights (fetching from TFHub)?
see tests/nonci/test_load_pretrained_weights.py <https://github.com/kpe/bert-for-tf2/blob/master/tests/nonci/test_load_pretrained_weights.py>
_:
.. code:: python
model_name = "albert_base"
model_dir = bert.fetch_tfhub_albert_model(model_name, ".models")
model_params = bert.albert_params(model_name)
l_bert = bert.BertModelLayer.from_params(model_params, name="albert")
use in a Keras Model here, and call model.build()
bert.load_albert_weights(l_bert, albert_dir) # should be called after model.build()
- How to use ALBERT with the
google-research/ALBERT
_ pre-trained weights (non TFHub)?
see tests/nonci/test_load_pretrained_weights.py <https://github.com/kpe/bert-for-tf2/blob/master/tests/nonci/test_load_pretrained_weights.py>
_:
.. code:: python
model_name = "albert_base_v2"
model_dir = bert.fetch_google_albert_model(model_name, ".models")
model_ckpt = os.path.join(albert_dir, "model.ckpt-best")
model_params = bert.albert_params(model_dir)
l_bert = bert.BertModelLayer.from_params(model_params, name="albert")
use in a Keras Model here, and call model.build()
bert.load_albert_weights(l_bert, model_ckpt) # should be called after model.build()
- How to use ALBERT with the
brightmart/albert_zh
_ pre-trained weights?
see tests/nonci/test_albert.py <https://github.com/kpe/bert-for-tf2/blob/master/tests/nonci/test_albert.py>
_:
.. code:: python
model_name = "albert_base"
model_dir = bert.fetch_brightmart_albert_model(model_name, ".models")
model_ckpt = os.path.join(model_dir, "albert_model.ckpt")
bert_params = bert.params_from_pretrained_ckpt(model_dir)
l_bert = bert.BertModelLayer.from_params(bert_params, name="bert")
use in a Keras Model here, and call model.build()
bert.load_albert_weights(l_bert, model_ckpt) # should be called after model.build()
- How to tokenize the input for the
google-research/bert
_ models?
.. code:: python
do_lower_case = not (model_name.find("cased") == 0 or model_name.find("multi_cased") == 0)
bert.bert_tokenization.validate_case_matches_checkpoint(do_lower_case, model_ckpt)
vocab_file = os.path.join(model_dir, "vocab.txt")
tokenizer = bert.bert_tokenization.FullTokenizer(vocab_file, do_lower_case)
tokens = tokenizer.tokenize("Hello, BERT-World!")
token_ids = tokenizer.convert_tokens_to_ids(tokens)
- How to tokenize the input for
brightmart/albert_zh
?
.. code:: python
import params_flow pf
fetch the vocab file
albert_zh_vocab_url = "https://raw.githubusercontent.com/brightmart/albert_zh/master/albert_config/vocab.txt"
vocab_file = pf.utils.fetch_url(albert_zh_vocab_url, model_dir)
tokenizer = bert.albert_tokenization.FullTokenizer(vocab_file)
tokens = tokenizer.tokenize("你好世界")
token_ids = tokenizer.convert_tokens_to_ids(tokens)
- How to tokenize the input for the
google-research/ALBERT
_ models?
.. code:: python
import sentencepiece as spm
spm_model = os.path.join(model_dir, "assets", "30k-clean.model")
sp = spm.SentencePieceProcessor()
sp.load(spm_model)
do_lower_case = True
processed_text = bert.albert_tokenization.preprocess_text("Hello, World!", lower=do_lower_case)
token_ids = bert.albert_tokenization.encode_ids(sp, processed_text)
- How to tokenize the input for the Chinese
google-research/ALBERT
_ models?
.. code:: python
import bert
vocab_file = os.path.join(model_dir, "vocab.txt")
tokenizer = bert.albert_tokenization.FullTokenizer(vocab_file=vocab_file)
tokens = tokenizer.tokenize(u"你好世界")
token_ids = tokenizer.convert_tokens_to_ids(tokens)
Resources
BERT
_ - BERT: Pre-training of Deep Bidirectional Transformers for Language Understandingadapter-BERT
_ - adapter-BERT: Parameter-Efficient Transfer Learning for NLPALBERT
_ - ALBERT: A Lite BERT for Self-Supervised Learning of Language Representationsgoogle-research/bert
_ - the original BERT
_ implementationgoogle-research/ALBERT
_ - the original ALBERT
_ implementation by Googlegoogle-research/albert(old)
_ - the old location of the original ALBERT
_ implementation by Googlebrightmart/albert_zh
_ - pre-trained ALBERT
_ weights for Chinesekpe/params-flow
_ - A Keras coding style for reducing Keras
_ boilerplate code in custom layers by utilizing kpe/py-params
_
.. _kpe/params-flow
: https://github.com/kpe/params-flow
.. _kpe/py-params
: https://github.com/kpe/py-params
.. _bert-for-tf2
: https://github.com/kpe/bert-for-tf2
.. _Keras
: https://keras.io
.. _pre-trained weights
: https://github.com/google-research/bert#pre-trained-models
.. _google-research/bert
: https://github.com/google-research/bert
.. _google-research/bert/modeling.py
: https://github.com/google-research/bert/blob/master/modeling.py
.. _BERT
: https://arxiv.org/abs/1810.04805
.. _pre-trained google model
: https://github.com/google-research/bert
.. _tests/test_bert_activations.py
: https://github.com/kpe/bert-for-tf2/blob/master/tests/test_compare_activations.py
.. _TensorFlow 2.0
: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf
.. _TensorFlow 1.14
: https://www.tensorflow.org/versions/r1.14/api_docs/python/tf
.. _google-research/adapter-bert
: https://github.com/google-research/adapter-bert/
.. _adapter-BERT
: https://arxiv.org/abs/1902.00751
.. _ALBERT
: https://arxiv.org/abs/1909.11942
.. _brightmart/albert_zh ALBERT for Chinese
: https://github.com/brightmart/albert_zh
.. _brightmart/albert_zh
: https://github.com/brightmart/albert_zh
.. _google ALBERT weights
: https://github.com/google-research/google-research/tree/master/albert
.. _google-research/albert(old)
: https://github.com/google-research/google-research/tree/master/albert
.. _google-research/ALBERT
: https://github.com/google-research/ALBERT
.. _TFHub/albert
: https://tfhub.dev/google/albert_base/2
.. |Build Status| image:: https://travis-ci.com/kpe/bert-for-tf2.svg?branch=master
:target: https://travis-ci.com/kpe/bert-for-tf2
.. |Coverage Status| image:: https://coveralls.io/repos/kpe/bert-for-tf2/badge.svg?branch=master
:target: https://coveralls.io/r/kpe/bert-for-tf2?branch=master
.. |Version Status| image:: https://badge.fury.io/py/bert-for-tf2.svg
:target: https://badge.fury.io/py/bert-for-tf2
.. |Python Versions| image:: https://img.shields.io/pypi/pyversions/bert-for-tf2.svg
.. |Downloads| image:: https://img.shields.io/pypi/dm/bert-for-tf2.svg
.. |Twitter| image:: https://img.shields.io/twitter/follow/siddhadev?logo=twitter&label=&style=
:target: https://twitter.com/intent/user?screen_name=siddhadev