Brickflow
BrickFlow is specifically designed to enable the development of Databricks workflows using Python, streamlining the
process through a command-line interface (CLI) tool.
Contributors
Thanks to all the contributors who have helped ideate, develop and bring Brickflow to its current state.
Contributing
We're delighted that you're interested in contributing to our project! To get started,
please carefully read and follow the guidelines provided in our contributing document.
Documentation
Brickflow documentation can be found here.
Getting Started
Prerequisites
- Install brickflows
pip install brickflows
- Install Databricks CLI
curl -fsSL https://raw.githubusercontent.com/databricks/setup-cli/main/install.sh | sudo sh
- Configure Databricks cli with workspace token. This configures your
~/.databrickscfg
file.
databricks configure --token
Hello World workflow
- Create your first workflow using brickflow
mkdir hello-world-brickflow
cd hello-world-brickflow
brickflow projects add
- Provide the following inputs
Project name: hello-world-brickflow
Path from repo root to project root (optional) [.]: .
Path from project root to workflows dir: workflows
Git https url: https://github.com/Nike-Inc/brickflow.git
Brickflow version [auto]:<hit enter>
Spark expectations version [0.5.0]: 0.8.0
Skip entrypoint [y/N]: N
Note: You can provide your own github repo url.
- Create a new file hello_world_wf.py in the workflows directory
touch workflows/hello_world_wf.py
- Copy the following code in hello_world_wf.py file
from brickflow import (
ctx,
Cluster,
Workflow,
NotebookTask,
)
from airflow.operators.bash import BashOperator
cluster = Cluster(
name="job_cluster",
node_type_id="m6gd.xlarge",
spark_version="13.3.x-scala2.12",
min_workers=1,
max_workers=2,
)
wf = Workflow(
"hello_world_workflow",
default_cluster=cluster,
tags={
"product_id": "brickflow_demo",
},
common_task_parameters={
"catalog": "<uc-catalog-name>",
"database": "<uc-schema-name>",
},
)
@wf.task
def start():
print(f"Environment: {ctx.env}")
@wf.notebook_task
def example_notebook():
return NotebookTask(
notebook_path="notebooks/example_notebook.py",
base_parameters={
"some_parameter": "some_value",
},
)
@wf.task(depends_on=[start, example_notebook])
def list_lending_club_data_files():
return BashOperator(
task_id=list_lending_club_data_files.__name__,
bash_command="ls -lrt /dbfs/databricks-datasets/samples/lending_club/parquet/",
)
@wf.task(depends_on=list_lending_club_data_files)
def lending_data_ingest():
ctx.spark.sql(
f"""
CREATE TABLE IF NOT EXISTS
{ctx.dbutils_widget_get_or_else(key="catalog", debug="development")}.\
{ctx.dbutils_widget_get_or_else(key="database", debug="dummy_database")}.\
{ctx.dbutils_widget_get_or_else(key="brickflow_env", debug="local")}_lending_data_ingest
USING DELTA -- this is default just for explicit purpose
SELECT * FROM parquet.`dbfs:/databricks-datasets/samples/lending_club/parquet/`
"""
)
Note: Modify the values of catalog/database for common_task_parameters.
- Create a new file example_notebook.py in the notebooks directory
mkdir notebooks
touch notebooks/example_notebook.py
- Copy the following code in the example_notebook.py file
print("hello world")
Deploy the workflow to databricks
brickflow projects deploy --project hello-world-brickflow -e local
Run the demo workflow
- Login to databricks workspace
- Go to the workflows and select the workflow
4. click on the run button
Examples
Refer to the examples for more examples.