Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

camera-calib

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

camera-calib

Camera Calibration with pytorch

  • 0.0.4
  • PyPI
  • Socket score

Maintainers
1

camera_calib_python

This is a python based camera calibration "library". Some things:

  • Uses nbdev, which is an awesome and fun way to develop and tinker.
  • Uses pytorch for optimization of intrinsic and extrinsic parameters. Each step in the model is modularized as its own pytorch nn.module in the modules.ipynb notebook.
    • Optimization is carried out via the built in LBFGS optimizer. The LBFGS optimizer uses only the gradient to do a quasi second order optimization. However, I've noticed it's imperfect and can a take long time to converge in some cases.
    • The use of pytorch allows the forward pass to be easily modified. It also allows the use of any differentiable loss function although I've noticed that sum of squared errors seems to give the best results of the losses I've tried.
  • The fiducial point detector for my calibration board uses a pytorch neural net under the hood (more info here), which is easily integrated into this library since its python based.

Tutorial

import camera_calib.api as api

Before calibration can be done, we need the following information:

  1. Images and their respective camera and pose indices
  2. Calibration board geometry
  3. Fiducial point detector
  4. Control point refiner

1) Images

import re
from pathlib import Path
files_img = list(Path('data/dot_vision_checker').glob('*.png'))
files_img
[PosixPath('data/dot_vision_checker/SERIAL_16276941_DATETIME_2019-06-07-00:38:48-109732_CAM_2_FRAMEID_0_COUNTER_2.png'),
 PosixPath('data/dot_vision_checker/SERIAL_19061245_DATETIME_2019-06-07-00:38:19-438594_CAM_1_FRAMEID_0_COUNTER_1.png'),
 PosixPath('data/dot_vision_checker/SERIAL_16276942_DATETIME_2019-06-07-00:38:19-438636_CAM_3_FRAMEID_0_COUNTER_1.png'),
 PosixPath('data/dot_vision_checker/SERIAL_16276942_DATETIME_2019-06-07-00:38:48-109736_CAM_3_FRAMEID_0_COUNTER_2.png'),
 PosixPath('data/dot_vision_checker/SERIAL_16276941_DATETIME_2019-06-07-00:38:19-438631_CAM_2_FRAMEID_0_COUNTER_1.png')]
def _parse_name(name_img):
    match = re.match(r'''SERIAL_(?P<serial>.*)_
                         DATETIME_(?P<date>.*)_
                         CAM_(?P<cam>.*)_
                         FRAMEID_(?P<frameid>.*)_
                         COUNTER_(?P<counter>.*).png''', 
                     name_img, 
                     re.VERBOSE)
    return match.groupdict()
imgs = []
for file_img in files_img:
    dict_group = _parse_name(file_img.name)
    img = api.File16bitImg(file_img)
    img.idx_cam = int(dict_group['cam'])-1
    img.idx_cb  = int(dict_group['counter'])-1
    imgs.append(img)
for img in imgs: print(f'{img.name} - cam: {img.idx_cam} - cb: {img.idx_cb}')
SERIAL_16276941_DATETIME_2019-06-07-00:38:48-109732_CAM_2_FRAMEID_0_COUNTER_2 - cam: 1 - cb: 1
SERIAL_19061245_DATETIME_2019-06-07-00:38:19-438594_CAM_1_FRAMEID_0_COUNTER_1 - cam: 0 - cb: 0
SERIAL_16276942_DATETIME_2019-06-07-00:38:19-438636_CAM_3_FRAMEID_0_COUNTER_1 - cam: 2 - cb: 0
SERIAL_16276942_DATETIME_2019-06-07-00:38:48-109736_CAM_3_FRAMEID_0_COUNTER_2 - cam: 2 - cb: 1
SERIAL_16276941_DATETIME_2019-06-07-00:38:19-438631_CAM_2_FRAMEID_0_COUNTER_1 - cam: 1 - cb: 0

2) Calibration board geometry

The calibration board geometry specifies where fiducial markers and control points are located. For this example, my dot vision checker board is used.

h_cb = 50.8
w_cb = 50.8
h_f = 42.672
w_f = 42.672
num_c_h = 16
num_c_w = 16
spacing_c = 2.032
cb_geom = api.CbGeom(h_cb, w_cb,
                     api.CpCSRGrid(num_c_h, num_c_w, spacing_c),
                     api.FmCFPGrid(h_f, w_f))
cb_geom.plot()

png

3) Fiducial detector

from pathlib import Path

This fiducial detector will take in an image and return the locations of the fiducial markers. The detector in this example is a neural net trained specifically on my calibration board. More info available at:

file_model = Path('models/dot_vision_checker.pth')
detector = api.DotVisionCheckerDLDetector(file_model)

4) Control Point Refiner

The refiner will take in an image, initial guesses for control points, and the boundaries around the control points, and return a refined point. The boundaries help determine how much neighboring info can be used to refine the control point.

refiner = api.OpenCVCheckerRefiner(hw_min=5, hw_max=15, cutoff_it=20, cutoff_norm=1e-3)

Calibrate

Now, we can calibrate

calib = api.multi_calib(imgs, cb_geom, detector, refiner)
Refining control points for: SERIAL_19061245_DATETIME_2019-06-07-00:38:19-438594_CAM_1_FRAMEID_0_COUNTER_1...
Refining single parameters...
 - Iteration: 000 - Norm:    0.00492 - Loss:    5.36733
 - Iteration: 001 - Norm:    0.14985 - Loss:    3.73449
 - Iteration: 002 - Norm:    0.01378 - Loss:    3.72178
 - Iteration: 003 - Norm:    3.80677 - Loss:    3.50140
 - Iteration: 004 - Norm:   60.91136 - Loss:    1.69839
 - Iteration: 005 - Norm:    0.00000 - Loss:    1.69839
Refining control points for: SERIAL_16276941_DATETIME_2019-06-07-00:38:48-109732_CAM_2_FRAMEID_0_COUNTER_2...
Refining control points for: SERIAL_16276941_DATETIME_2019-06-07-00:38:19-438631_CAM_2_FRAMEID_0_COUNTER_1...
Refining single parameters...
 - Iteration: 000 - Norm:    0.04150 - Loss:  145.18373
 - Iteration: 001 - Norm:    0.13431 - Loss:   83.63355
 - Iteration: 002 - Norm:    0.84358 - Loss:    3.92886
 - Iteration: 003 - Norm:    0.27788 - Loss:    3.59249
 - Iteration: 004 - Norm:   27.32694 - Loss:    2.63209
 - Iteration: 005 - Norm:    0.01238 - Loss:    2.63208
 - Iteration: 006 - Norm:    0.00000 - Loss:    2.63208
Refining control points for: SERIAL_16276942_DATETIME_2019-06-07-00:38:19-438636_CAM_3_FRAMEID_0_COUNTER_1...
Refining control points for: SERIAL_16276942_DATETIME_2019-06-07-00:38:48-109736_CAM_3_FRAMEID_0_COUNTER_2...
Refining single parameters...
 - Iteration: 000 - Norm:    0.04606 - Loss:   59.69785
 - Iteration: 001 - Norm:    0.18309 - Loss:   23.21653
 - Iteration: 002 - Norm:    0.19523 - Loss:   10.38509
 - Iteration: 003 - Norm:    0.09765 - Loss:   10.04688
 - Iteration: 004 - Norm:    1.24157 - Loss:    9.89971
 - Iteration: 005 - Norm:  104.59411 - Loss:    1.76128
 - Iteration: 006 - Norm:    0.29888 - Loss:    1.76086
 - Iteration: 007 - Norm:    0.00000 - Loss:    1.76086
Refining multi parameters...
 - Iteration: 000 - Norm:    0.00057 - Loss:   10.14000
 - Iteration: 001 - Norm:    0.00077 - Loss:    8.43795
 - Iteration: 002 - Norm:    0.00093 - Loss:    8.04904
 - Iteration: 003 - Norm:    0.00117 - Loss:    7.83528
 - Iteration: 004 - Norm:    0.00270 - Loss:    7.61741
 - Iteration: 005 - Norm:    0.00085 - Loss:    7.56616
 - Iteration: 006 - Norm:    0.00390 - Loss:    7.39859
 - Iteration: 007 - Norm:    0.00385 - Loss:    7.29511
 - Iteration: 008 - Norm:    0.00106 - Loss:    7.28492
 - Iteration: 009 - Norm:    0.00278 - Loss:    7.27331
 - Iteration: 010 - Norm:    0.00804 - Loss:    7.24146
 - Iteration: 011 - Norm:    0.00827 - Loss:    7.21109
 - Iteration: 012 - Norm:    0.00414 - Loss:    7.20269
 - Iteration: 013 - Norm:    0.00452 - Loss:    7.19479
 - Iteration: 014 - Norm:    0.00009 - Loss:    7.19475
 - Iteration: 015 - Norm:    0.01420 - Loss:    7.17619
 - Iteration: 016 - Norm:    0.00618 - Loss:    7.17040
 - Iteration: 017 - Norm:    0.01975 - Loss:    7.15089
 - Iteration: 018 - Norm:    0.00002 - Loss:    7.15089
 - Iteration: 019 - Norm:    0.00000 - Loss:    7.15089

From Bo Li's calibration paper, we know the coordinate graph of calibration board poses and cameras forms a bipartite graph. For debugging purposes this is displayed below.

api.plot_bipartite(calib)

png

Plot residuals

api.plot_residuals(calib);

png

Plot extrinsics; note that %matplotlib notebook can be used to make the plot interactive

import matplotlib.pyplot as plt
fig = plt.figure(figsize=(20,20))

ax = fig.add_subplot(2, 2, 1, projection='3d')
api.plot_extrinsics(calib, ax=ax)
ax.view_init(elev=90, azim=-90)

ax = fig.add_subplot(2, 2, 2, projection='3d')
api.plot_extrinsics(calib, ax=ax)
ax.view_init(elev=45, azim=-45)

ax = fig.add_subplot(2, 2, 3, projection='3d')
api.plot_extrinsics(calib, ax=ax)
ax.view_init(elev=0, azim=-90)

ax = fig.add_subplot(2, 2, 4, projection='3d')
api.plot_extrinsics(calib, ax=ax)
ax.view_init(elev=0, azim=0)

plt.subplots_adjust(wspace=0, hspace=0)

png

This matches pretty closely to my camera rig

Save/Load

Save

api.save(calib, '/tmp/calib.pth')

Load

del calib
calib = api.load('/tmp/calib.pth')

Build

from camera_calib.utils import convert_notebook
convert_notebook()

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc